

Draft

Quarterly Creosote Extraction Summary Fourth Quarter 1994

McCormick & Baxter Creosoting Company

Prepared for

Oregon Department of Environmental Quality Portland, Oregon

February 1995

ST 4.1.6

PTI

ENVIRONMENTAL SERVICES

4000 Kruse Way Place Building #2, Suite 285 Lake Oswego, Oregon 97035

Draft

Quarterly Creosote Extraction Summary Fourth Quarter 1994

McCormick & Baxter Creosoting Company

Prepared for

Oregon Department of Environmental Quality 811 S.W. Sixth Portland, Oregon 97204

PTI Contract C412-03-04

February 1995

CONTENTS

	Page
LIST OF FIGURES	iii
LIST OF TABLES	iii
ACRONYMS AND ABBREVIATIONS	iv
INTRODUCTION	1
PURE-PHASE NAPL EXTRACTION	2
TOTAL FLUIDS EXTRACTION	9
SEDIMENT NAPL INVESTIGATION	11
WASTEWATER TREATMENT PLANT	12
NAPL STORAGE	15
ACTIVITIES PLANNED FOR SUBSEQUENT REPORTING PERIODS	17

LIST OF FIGURES

		Page
Figure 1.	Site features and well locations	3
Figure 2.	Pure-phase NAPL extraction system recovery	7
Figure 3.	Cumulative pure-phase NAPL extracted since 1989	8

LIST OF TABLES

		Page
Table 1.	Historical and monthly maximum DNAPL thickness	4
Table 2.	Historical and monthly maximum LNAPL thickness	5
Table 3.	Pure-phase NAPL extraction summary	6
Table 4.	Total fluids pumping summary	10
Table 5.	Summary of effluent analytical results	13
Table 6.	Summary of metals in wastewater	14
Table 7.	Site storage tank measurements	16

ACRONYMS AND ABBREVIATIONS

DAF dissolved air flotation

DEQ Oregon Department of Environmental Quality

DNAPL dense nonaqueous-phase liquid
FWDA Former Waste Disposal Area
GAC granular activated carbon
LNAPL light nonaqueous-phase liquid

NAPL nonaqueous-phase liquid

PAH polycyclic aromatic hydrocarbon
PCE Pollution Control Engineering
PNG Pacific Northern Geosciences

TFA Tank Farm Area
TFAB tank farm area beach
TLC thin-layer chromatography

INTRODUCTION

This report summarizes the results of creosote extraction activities for the 4-month period between September and December 1994 at the McCormick & Baxter Creosoting Company (McCormick & Baxter) site. Data summarized for this reporting period include monthly maximum measured nonaqueous-phase liquid (NAPL) thickness; monthly and cumulative pure-phase NAPL extracted from the TFA and FWDA; total fluids extracted from the Tank Farm Area (TFA); operation of the pilot wastewater treatment system; estimated volume of NAPL stored onsite; and activities scheduled for the next reporting period.

PURE-PHASE NAPL EXTRACTION

NAPL thickness is measured in productive wells weekly, and within the estimated residual NAPL plume area on a monthly basis. Figure 1 presents well locations, site layout, and the estimated extent of the residual NAPL plume. The historical and monthly maximum measured thickness for dense nonaqueous-phase liquid (DNAPL) and light nonaqueous-phase liquid (LNAPL) is summarized in Tables 1 and 2. During the reporting period (September through December), the maximum NAPL thickness at the Former Waste Disposal Area (FWDA) was approximately 34 ft (MW-20i). In the TFA, the maximum NAPL thickness was approximately 9 ft (MW-Is). In both wells, the NAPL occurs as DNAPL.

NAPL is removed from wells within the extraction network that contain significant measurable thicknesses of NAPL (Figure 1). Extraction is performed weekly and includes water/product level monitoring and purging of selected wells, adjustment of extraction rates, and documentation of NAPL recovery activities in the TFA, FWDA, and Retort Area. Table 3 presents a summary of cumulative NAPL extracted since 1989, NAPL extracted by the extraction system since it was implemented February 1993, and NAPL extracted for this reporting period.

Approximately 154 gal of pure-phase NAPL were recovered between September and December 1994 including 116 gal of DNAPL and 38 gal of LNAPL. Most of the NAPL was recovered from MW-20i (69 gal of DNAPL) and from EW-15 (33 gal of LNAPL) located in the FWDA. Limited NAPL measurements and extraction were conducted in the TFA due to total fluids testing being conducted in this area. Approximately 9 gal of LNAPL were extracted from the TFA from EW-1s. A summary of NAPL extracted from individual wells is presented in Appendix A (Tables A-1 through A-4). Figure 2 presents a graphic summary of NAPL extracted during 1994. Figure 3 presents the cumulative pure-phase NAPL extracted from the site since 1989.

The tank farm area beach (TFAB) trench wells (TM-1 through TM-5) are monitored on a monthly basis for the presence of LNAPL. LNAPL is expected to accumulate in the trench during periods of low river stage and tide; however, to date no LNAPL has been measured in the trench since installation in October 1993.

Figure 1. Site features and well locations.

TABLE 1. HISTORICAL AND MONTHLY MAXIMUM DNAPL THICKNESS

	Maximum		September 1994	October 1994	November 1994	Decembe 1994
	DNAPL		DNAPL	DNAPL	DNAPL	DNAPL
	Thickness		Thickness	Thickness	Thickness	Thickness
Well ID	(ft)	Date	(ft)	(ft)	(ft)	(ft)
ank Farm Area	(.7			1.7	(1.7)	(14)
W-1s	3.73	12/94		< 0.01		3.73
EW-4s	6.2	03/93				0.67
W-5s	0.86	09/94	0.86			< 0.01
W-7s	2.09	12/94				2.09
EW-8s	2.7	07/93	2.02	1.97		2.02
	1.06	03/93	< 0.01	<0.01	<0.01	
W-17s		03/93				< 0.01
W-18s	<0.01	20/07	1.42	<0.01	< 0.01	<0.01
/W-Is	9.93	08/87	9.18	4.74		7.73
//W-LRs	< 0.01		<0.01	< 0.01		< 0.01
/W-Ps	< 0.01		< 0.01	< 0.01		< 0.01
//W-Rs	< 0.01		< 0.01	< 0.01	·	< 0.01
/W-7s	3.67	11/91	1.27	2.17		2.64
/W-8s	1.78	11/91	1.04	1.15		1.55
1W-23d	<0.01		< 0.01	< 0.01		< 0.01
isposal Trench			3,0			.0.01
/W-11s	<0.01		< 0.01			< 0.01
//W-11s	2.01	07/91	<0.01	1.33		1.36
The state of the s	2.01	07/91	VO.01	1.33		1.30
Retort Area	4.00	00/04	-0.04	0.40		
W-12s	1.09	03/94	<0.01	0.42		0.56
/W-10s	<0.01		<0.01	<0.01		< 0.01
/W-11s	< 0.01		< 0.01	< 0.01		< 0.01
/W-13i	< 0.01		< 0.01	< 0.01		< 0.01
/W-14s	< 0.01		< 0.01	< 0.01		< 0.01
/W-16s	< 0.01		< 0.01	< 0.01		< 0.01
/W-22i	3.02	10/94	2.72	< 0.01		2.99
/W-Cs	< 0.01		< 0.01	< 0.01		< 0.01
/W-Hs	<0.01		< 0.01	< 0.01		< 0.01
/W-Js	< 0.01		<0.01	< 0.01		< 0.01
FA Beach Wells	-0.01			0.01		-0.01
M-1	< 0.01		< 0.01	< 0.01		< 0.01
M-2	< 0.01		<0.01	<0.01		
			< 0.01	<0.01		< 0.01
M-3	<0.01					< 0.01
M-4	<0.01		<0.01	<0.01	==	< 0.01
M-5	<0.01		<0.01	<0.01		< 0.01
/W-26s	< 0.01		< 0.01	< 0.01		< 0.01
/W−27s	< 0.01		< 0.01	< 0.01		< 0.01
/W−28s	< 0.01		< 0.01	< 0.01		< 0.01
/W-29s	< 0.01		< 0.01	< 0.01		< 0.01
/W-30s	< 0.01		< 0.01	< 0.01		< 0.01
ormer Waste Dis						
W-2s	1.9	08/91	< 0.01	0.23		< 0.01
W_6s	3.4	08/93	1.2	1.18	2.23	0.67
W-9s	2.69	12/94	2.45	1.93	2.52	2.69
	< 0.01	12/34	< 0.01	< 0.01	2.52	
W-10s						< 0.01
W-13s	< 0.01		<0.01	<0.01		< 0.01
W-14s	<0.01		<0.01	< 0.01	<0.01	< 0.01
W-15s	< 0.01		< 0.01	< 0.01		< 0.01
W-16s	< 0.01		< 0.01	< 0.01		< 0.01
/W-15s	< 0.01		< 0.01	< 0.01		< 0.01
/W-17s	< 0.01		< 0.01	< 0.01		< 0.01
/W-18s	< 0.01		< 0.01	< 0.01		< 0.01
/W-20i	34.32	12/94	21.69	15.13	9.06	34.32
/W-21s	< 0.01	,-,-	< 0.01	< 0.01	< 0.01	< 0.01
	< 0.01		<0.01			< 0.01
/W−34i		01/94		2.93		
/W-Ds	6.01		2.81		0.5	5.5
/W-Es	4.2	08/87	<0.01	<0.01	==	< 0.01
/W-Fs	<0.01		< 0.01	< 0.01		<0.01
//W-Gs	14.85	03/91	2.45	1.85		7.14
WDA Beach Wel						
1W-25s	< 0.01		< 0.01	< 0.01		< 0.01
/W-31s	< 0.01		< 0.01	< 0.01		< 0.01

TABLE 2. HISTORICAL AND MONTHLY MAXIMUM LNAPL THICKNESS

	Maximum		September 1994	October 1994	November 1994	December 1994
	LNAPL		LNAPL	LNAPL	LNAPL	LNAPL
	Thickness		Thickness	Thickness	Thickness	Thickness
Vell ID	(ft)	Date	(ft)	(ft)	(ft)	(ft)
ank Farm Area						
W-1s	< 0.01			< 0.01		< 0.01
W-4s	1.5	09/92				< 0.01
W-5s	0.72	12/93	< 0.01			< 0.01
W-7s	1.4	09/92				< 0.01
W-8s	< 0.01		< 0.01	< 0.01		< 0.01
W-17s	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
W-18s	4.43	04/94	1.42	0.94	1.39	1.25
∕W-Is	< 0.01		< 0.01	< 0.01		< 0.01
/W-LRs	< 0.01		< 0.01	< 0.01		< 0.01
/W-Ps	< 0.01		< 0.01	< 0.01		< 0.01
/W-Rs	2.81	09/94	2.81	2.73		2.58
/W-7s	2.76	09/92		<0.01		< 0.01
1W-8s	< 0.01	00,02	< 0.01	<0.01		< 0.01
/W-23d	< 0.01		< 0.01	<0.01		<0.01
isposal Trench			V0.01	70.01		~0.01
	<0.01		< 0.01			<0.01
/W-11s	<0.01		<0.01	<0.01		
/W-19s	<0.01		<0.01	<0.01		<0.01
Retort Area	-0.04		-0.04	-0.04		-0.04
W-12s	< 0.01	00/00	<0.01	< 0.01		< 0.01
/W-10s	8.08	02/93	1.17	3.94		< 0.01
/W-11s	< 0.01		<0.01	<0.01		< 0.01
/W-13i	< 0.01		<0.01	< 0.01		< 0.01
1W-14s	< 0.01		< 0.01	< 0.01		< 0.01
/IW-16s	< 0.01		< 0.01	< 0.01		< 0.01
/W-22i	< 0.01		< 0.01	< 0.01		< 0.01
/W-Cs	< 0.01		< 0.01	< 0.01		< 0.01
//W-Hs	< 0.01		< 0.01	< 0.01		< 0.01
/W−Js	< 0.01		< 0.01	< 0.01		< 0.01
FA Beach Well	S					
M-1	< 0.01		< 0.01	< 0.01		< 0.01
M-2	< 0.01		< 0.01	< 0.01		< 0.01
M-3	< 0.01			< 0.01		< 0.01
M-4	< 0.01		< 0.01	< 0.01		< 0.01
M-5	< 0.01		< 0.01	< 0.01		< 0.01
/W-26s	< 0.01		< 0.01	< 0.01		< 0.01
/W-27s	< 0.01		< 0.01	< 0.01		< 0.01
/W-28s	< 0.01		< 0.01	< 0.01		< 0.01
/W-29s	< 0.01		< 0.01	<0.01		< 0.01
/W-30s	<0.01		<0.01	<0.01		< 0.01
ormer Waste D						10.01
W-2s	< 0.01		<0.01	< 0.01		< 0.01
W-6s	2.13	04/94	1.85	0.74	< 0.01	< 0.01
W-9s	< 0.01	0 1/04	<0.01	<0.01	<0.01	< 0.01
	7.5	07/93	0.1	0.36		1.25
W-10s	<0.01	01/30	<0.01	< 0.01	<0.01	<0.01
W-13s	1.11	08/94	1.11	1.34	<0.01 	<0.01
W-14s	8.25	09/94	8.25	5.44	1.96	0.32
W-15s		03/34			1.96	
W-16s	<0.01		<0.01	< 0.01	<0.01	<0.01
EW-19	< 0.01	00/04	< 0.01	<0.01		<0.01
W-20	0.25	09/94	0.25	0.29	<0.01	< 0.01
/W-15s	< 0.01		<0.01	<0.01		< 0.01
/W-17s	<0.01	00101	< 0.01	< 0.01		< 0.01
1W-18s	0.14	09/94	0.14	0.8		< 0.01
/W-20i	< 0.01		< 0.01	< 0.01		< 0.01
/W-21s	10.28	09/92	1.38	1.34	1.34	1.37
/W−34i	< 0.01		< 0.01	< 0.01		< 0.01
MW-Ds	< 0.01		< 0.01	< 0.01		< 0.01
/W-Es	2.97	09/92	1.25	1.33		< 0.01
MW-Fs	< 0.01		< 0.01	< 0.01		< 0.01
MW-Gs	2.34	09/92	< 0.01	< 0.01		< 0.01
FWDA Beach W						
/W-25s	< 0.01		< 0.01	< 0.01		< 0.01
/W-31s	< 0.01		< 0.01	< 0.01		< 0.01

TABLE 3. PURE-PHASE NAPL EXTRACTION SUMMARY

Area	Cumulative (since 1989)	Extraction System (since February 1993)	Current Period (Sept-Dec 1994)	
TFA	909	247	17	
FWDA	1256	680	134	
TFAB Trench	0	0	0	
Other Areas	13	11	3	
Total LNAPL	NA	NA	38	
Total DNAPL	NA	NA	116	
Site Total	2,178	938	154	

Note: FWDA - former waste disposal area

TFA - tank farm area

TFAB - tank farm area beach (installed in October 1993)

NA - not available

Figure 2. Pure-phase NAPL extraction system recovery .

Figure 3. Cumulative pure-phase NAPL extracted since 1989.

TOTAL FLUIDS EXTRACTION

Groundwater pumping from EW-4 and EW-7 in the TFA was initiated during the reporting period in addition to pumping from EW-1 to fill the influent tank as part of the total fluids testing and pilot wastewater treatment program. Table 4 summarizes total fluids removed since inception. Approximately 46,926 gal of fluids were extracted from the three wells during the reporting period. Approximately 17,866 gal of groundwater were treated and discharged to the Willamette River in late October; the remaining water is stored within the treatment system.

As indicated earlier, total fluids pumping from the TFA was initiated as part of the total fluids testing and pilot wastewater treatment program. Based upon visual estimates, the extracted fluids contained less than 1 percent NAPL. Quantities of NAPL extracted from the total fluids pumping have been estimated from the influent holding tank (Tank 1) at 240 gal and the sludge tank (Tank 4) at 160 gal. Testing of NAPL yields from the TFA and other areas will commence when the pilot wastewater treatment system is operational. Testing of the total fluids extraction system will be performed in accordance with the Draft NAPL Extraction System Operations and Maintenance Manual (December 1994).

TABLE 4. TOTAL FLUIDS PUMPING SUMMARY

Well	Total Hours Pumped	Rate (gpm)	Total Fluids Extracted (Sept-Dec) (gal)	Estimated NAPL Extracted (Sept-Dec) (gal)	Cumulative Total Fluids Extracted (since Aug-94) (gal)	Cumulative NAPL Extracted (since Aug-94) (gal)
EW-1s	77.5	1.8	8,370	NM	8,370	NM
EW-4s	98	2.8	15,876	NM	15,876	NM
EW-7s	135	2.8	22,680	NM	22,680	NM
Total	340	NA	46,926	400	53,067	400

Note: NM - not measurable

NA - not applicable

SEDIMENT NAPL INVESTIGATION

The sediment NAPL investigation was initiated in 1993 and additional work was conducted in October 1994 to evaluate the presence and extraction of active NAPL pools in near-shore sediments. Recoverable NAPL was found in sediments in a area around the creosote dock with measurable thicknesses of LNAPL, up to 1 ft thick. Pure-phase NAPL extraction resulted in purging the volume of NAPL within the well. Further testing of total fluids pumping did not enhance NAPL recovery. Discharge of NAPL (as indicated by oily sheen on the river surface) to sediments appears to be greatest during low river stages when hydraulic gradients are steepest. Increases in air and water temperatures during the summer months may reduce the NAPL viscosity. This increase also coincides with the lowest river stages and increased sediment agitation caused by tidal fluctuations and river traffic, which could be resulting in increased NAPL discharge. Based on the results of the sediment investigations, it is recommended that further testing of pure-phase NAPL extraction be conducted to investigate the influence of river stages and daily tidal cycles.

WASTEWATER TREATMENT PLANT

Construction of the pilot water treatment plant was completed in September 1994. The pilot plant is used to treat groundwater derived through total fluids extraction efforts. The wastewater treatment plant consists of a dissolved air flotation (DAF) unit, which removes the bulk of the organics from the influent, followed by a granular activated carbon (GAC) polishing unit. The DAF unit was assembled and fine-tuned by September 23. Initial operation of the GAC unit indicated leaking drum tops; this problem was rectified during the first week in October.

Analytical samples were collected in early October to test the efficiency of the GAC system. In addition, samples were collected for thin-layer chromatography (TLC) field screening analysis to test for breakthrough of organics in the GAC system. Initial TLC results indicated up to 3 mg/L of polycyclic aromatic hydrocarbon (PAH) compounds, and the system was shut down pending receipt of analytical results. Laboratory results indicated that there were no organic compounds present above method reporting limits, and the system was restarted.

On October 17, following treatment of the first batch of wastewater, the effluent batch tank (BT-3a) was sampled for compliance with the special discharge permit issued by the Oregon Department of Environmental Quality (DEQ). Analytical results from BT-3a were below permit levels, and approximately 17,866 gal of treated water were discharged to the Willamette River on October 25. Analytical results are summarized in Table 5, and presented in Appendix B.

The second batch sample in the effluent holding tank was sampled on November 3, 1994, and indicated zinc levels between 150 μ g/L and 340 μ g/L. (Discharge criteria is 110 μ g/L.) The system was shut down and samples were collected at the wells and throughout the treatment system in an attempt to identify the source of the anomalously high zinc concentrations. Water samples indicated zinc levels at 23.3 mg/L in the influent/separator tank (Tank 1) and 24.8 mg/L in the flow equalization tank (Tank 2). Samples collected from wells in the TFA contained zinc levels between 30 μ g/L and 80 μ g/L. Groundwater from sediment well #3, which was tested for NAPL extraction during the period, was also sampled and contained 240 μ g/L zinc. The source of the elevated zinc levels in the treatment plant is currently unknown. Results of metals analysis are summarized in Table 6, and presented in Appendix B.

Following receipt of analytical data in late November, metals treatment options were evaluated by PTI with the assistance of Onsite Enterprises (Warren Hansen) and Pacific Northern Geosciences (PNG). On December 6, an ion-exchange resin column was ordered from Pollution Control Engineering (PCE), vendor of the DAF system, in an attempt to reduce zinc levels in the effluent tank (Tank 3a). The ion-exchange resin

TABLE 5. SUMMARY OF EFFLUENT ANALYTICAL RESULTS

Parameter	Special Permit Limit ^a	Sample BT3-1 ^b	Sample BT3-2 ^c
Total 8270 analytes ^d	<1 mg/L	<0.0035 mg/L	<0.0035 mg/L
Pentachlorophenol	<0.010 mg/L	0.00016 mg/L	<0.0035 mg/L
Arsenic (total)	<0.048 mg/L	<0.005 mg/L	<0.005 mg/L
Chromium VI	<0.011 mg/L	<0.010 mg/L	<0.010 mg/L
Chromium IIIe	<0.210 mg/L	<0.010 mg/L	<0.010 mg/L
Copper	<0.012 mg/L	<0.010 mg/L	<0.010 mg/L
Zinc	<0.110 mg/L	0.040 mg/L	0.034 mg/L
Free product	No visible sheen	No visible sheen	No visible sheen
рН	6.5-8.5	7.0	7.0

^a Special permit issued by DEQ on September 6, 1994.

^b Sample collected from batch tank on October 17, 1994; discharged October 23, 1994.

^c Sample collected from batch tank on November 3, 1994; holding for additional treatment.

^d Sum of 8310 and 8040 Modified analytes.

e Total chromium.

TABLE 6. SUMMARY OF METALS IN WASTEWATER

	Date		As	Cr	Cu	Fe	Mn	Na	Zn	
Sample ID	Sampled	Location	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Remarks
FFLUENT										
BT3-1	10/17/94	Tank 3	< 0.005	< 0.01	< 0.01				0.04	Batch 1 (Discharged 10/25/94)
BT3-2	11/03/94	Tank 3	< 0.005	< 0.01	< 0.01				0.34	Batch 2 effluent (1st sample)
BT3A-2A	11/11/94	Tank 3					-		0.15	Batch 2 effluent (duplicate)
DIS FILT	11/11/94	Tank 3							0.13	Filtered Batch 2 effluent
Tk3a	11/23/94	Tank 3	< 0.005	< 0.01	<0.01	1.18	4.3	297	0.15	Batch 2 effluent (full suite of metals)
ВТЗА	12/12/94	Tank 3							0.13	Batch 2 after running through carbon again
ВТЗА	12/28/94	Tank 3							0.22	Batch 2 following ion - exchange resin
SYSTEM										
GAC1-Eff	10/04/94	GAC eff	0.036	< 0.01	0.03				0.06	Carbon effluent (after filters and GAC)
GAC1-Inf	10/04/94	GAC inf	< 0.005	< 0.01	0.03				0.19	Carbon influent (after filters)
BT5 EFF	11/11/94	Blank							< 0.01	Equipment blank
GAC EFF	11/11/94	GAC eff							0.88	Carbon effluent (after filters and GAC)
T1 EFF	11/11/94	Tank 1							23.3	Tank 1 (pre-DAF)
T2 EFF	11/11/94	Tank 2							24.8	Tank 2 (post-DAF)
TK1 EFF	11/21/94	Tank 1	0.015	< 0.01	< 0.01	58.9			86.2	Tank 1 (pre-DAF)
TK1 INF	11/21/94	Tank 1	0.017	< 0.01	0.07	55.7			0.09	Delivery system to Tank 1
TK2 EFF	11/21/94	Tank 2	0.005	< 0.01	< 0.01	17.1			21.5	Tank 2 (post-DAF)
W741C	11/21/94	TFA	0.054	< 0.01	< 0.01	48.2			0.04	Composite of EW-1, 4, & 7 from TFA
Well 1	11/21/94	EW-1		<u></u>					0.03	Well EW-1 in TFA
Well 4	11/21/94	EW-4							0.08	Well EW-4 in TFA
Well 7	11/21/94	EW-7							0.08	Well EW-7 in TFA
Sed3	11/23/94	Sed Well 3	0.079	0.04	0.07	124	3.98	18.8	0.26	Sediment well #3 (full suite)

column was delivered to the site on December 22, 1994 and plumbed into the pilot treatment system the following day.

Effluent wastewater held in Tank 3a (previously treated by the DAF and GAC units) was treated by the ion-exchange column and water samples were collected on December 28, 1994. Analytical results from effluent water treated by the ion-exchange column indicated zinc levels of 220 μ g/L, still above discharge criteria.

The results of further testing of metals treatment methods will be presented in subsequent creosote extraction reports. In addition, alternative permit options (i.e., land application or higher discharge limits) will be pursued to facilitate plant operations. At present, the plant remains shut down until an effective metals treatment method is installed or modifications to the discharge permits are completed.

NAPL STORAGE

Pure-phase NAPL from routine extraction in the FWDA and other areas is pumped into 55-gal drums and manually transferred into the FWDA storage tank. Table 7 lists the NAPL storage tank capacity and tank measurements at the end of the reporting period. Approximately 834 gal of NAPL and 333 gal of water are present in the storage tank. According to weekly extraction records, approximately 938 gal of NAPL have been extracted by the system since February 1993, 220 gal of which were disposed of by CET during tank dismantling activities. The net volume of NAPL from extraction records (extraction records less NAPL disposed of) is approximately 16 percent less than measured in the storage. The discrepancy between the weekly extraction records and measured tank volume is due to difficulties in accurately measuring the small weekly volumes and distinguishing the different NAPL phases in the holding tank.

In addition to NAPL contained in the storage tank, approximately 400 gal of NAPL are contained in Tank 1 (influent/separator tank) and Tank 4 (sludge tank) at the pilot treatment plant.

Once sufficient NAPL has been recovered from site operations (approximately 5,000 gal), a subcontractor will be selected to properly characterize, transport, and dispose of the NAPL and sludge from pure-phase and total fluids extraction efforts.

TABLE 7. SITE STORAGE TANK MEASUREMENTS

Tank	Water Volume	NAPL Volume	Total Tank Volume	Unused Storage
FWDA storage tank	333	834	2,936	1,768
Influent/separator tank (Tank 1)	NA	240	NA	NA
Sludge Tank (Tank 4)	NA	160	6,000	5,840
Total onsite	NA	1,234	8,936	7,608

Note: Results reported in gal

ACTIVITIES PLANNED FOR SUBSEQUENT REPORTING PERIODS

The pure-phase NAPL extraction, total fluids extraction system, and wastewater treatment will continue to be evaluated over the next few reporting period. Data gathered during the investigation will be summarized in subsequent quarterly reports. Specific activities will include the following:

- Metals treatment options will be evaluated for the wastewater treatment plant. This includes polishing effluent water using other resins or compounds (e.g., manganese oxide) and flocculation.
- A sample of storm water from the retort sumps will be collected and analyzed to assess the possibility of mixing storm water with wastewater prior to treatment (to reduce overall metals loading to the plant).
- Land application of effluent and higher discharge limits for metals will be evaluated by PTI and DEQ.
- Once the pilot wastewater treatment system is operational, overall plant performance, carbon loading, and chemical consumption will be evaluated.
- Recovery data (following purging activities) will be collected from MW-20 in the FWDA and other productive wells to determine optimum purge frequencies, and to reassess the possibility of an automated pumping system for these wells.
- Total fluids extraction testing will continue in general accordance with the Draft NAPL Extraction System Operations and Maintenance Manual (December 1994) once the treatment plant is operational. In addition, total fluids and dual-phase testing will be reevaluated in the FWDA in future reporting periods.

APPENDIX A

NAPL Extraction Summary

TABLE A-1. SEPTEMBER 1994 EXTRACTION RECORD McCORMICK & BAXTER

		NAPL Remov		
			Cumulative	
	Pumping	Monthly	Since	
Well ID	Frequency	Total	Feb 1993	Remarks
Tank Farm A	ea			
MW-Is			89.0	Not purged due to demolition
MW-Ps			0.0	Not parged due to demontion
MW-7s			1.3	
MW-8i			0.0	
EW-1s			75.2	
EW-3s			0.0	
EW-4s			5.0	
EW-5s			0.6	
EW-7s			1.8	
EW-8s			1.8	
EW-17			3.7	
EW-18	P1	0.7		1 1145
		0.7	51.9	LNAPL
otal		0.7	230.3	
ank Farm Ar	ea Beach Interce	eptor Trench		
TM-1			0	
TM-2			0	
TM-3			0	
TM-4			0	
TM-5			0	
1141-0			U	
otal	Disposal Area	0	0	
otal ormer Waste	Disposal Area		0	
otal former Waste	Disposal Area	4.7	50.3	DNAPL
otal former Waste MW-Ds MW-Es			50.3	DNAPL
otal former Waste MW-Ds MW-Es MW-Gs			50.3 0.0 0.5	DNAPL
otal former Waste MW-Ds MW-Es MW-Gs MW-18s	P4	4.7	50.3 0.0 0.5 0.0	
otal former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i	P4	4.7	50.3 0.0 0.5 0.0 316.2	DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s	P4	4.7	50.3 0.0 0.5 0.0 316.2 48.2	
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s	P4 P4 P1	21.5 1.1	50.3 0.0 0.5 0.0 316.2 48.2 0.6	DNAPL LNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s	P4 P4 P1	21.5 1.1	50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9	DNAPL LNAPL LNAPL/DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s	P4 P4 P1	21.5 1.1	50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2	DNAPL LNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s	P4 P4 P1	21.5 1.1	50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5	DNAPL LNAPL LNAPL/DNAPL
fotal former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13	P4 P4 P1	21.5 1.1	50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0	DNAPL LNAPL LNAPL/DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0	DNAPL LNAPL LNAPL/DNAPL DNAPL
fotal former Waste MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15	P4 P4 P1	21.5 1.1	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0 0.0 69.3	DNAPL LNAPL LNAPL/DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0	DNAPL LNAPL LNAPL/DNAPL DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0 0.0 69.3 0.0	DNAPL LNAPL LNAPL/DNAPL DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0 0.0 69.3	DNAPL LNAPL LNAPL/DNAPL DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0 0.0 69.3 0.0	DNAPL LNAPL LNAPL/DNAPL DNAPL
Total Former Waste MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0 0.0 69.3 0.0	DNAPL LNAPL LNAPL/DNAPL DNAPL
Total Former Waste MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Fotal Other Areas MW-10s EW-11	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0 0.0 69.3 0.0 602.6	DNAPL LNAPL LNAPL/DNAPL DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Fotal Other Areas MW-10s EW-11 EW-12	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0 0.0 69.3 0.0 602.6	DNAPL LNAPL LNAPL/DNAPL DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Fotal Other Areas MW-10s EW-11 EW-12 MW-19s	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0 0.0 69.3 0.0 602.6	DNAPL LNAPL LNAPL/DNAPL DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Fotal Other Areas MW-10s EW-11 EW-12	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0 0.0 69.3 0.0 602.6	DNAPL LNAPL LNAPL/DNAPL DNAPL
Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Fotal Other Areas MW-10s EW-11 EW-12 MW-19s	P4 P1 P2 P2	21.5 1.1 1.8 2.7	0 50.3 0.0 0.5 0.0 316.2 48.2 0.6 23.9 47.2 46.5 0.0 0.0 69.3 0.0 602.6	DNAPL LNAPL LNAPL/DNAPL DNAPL

Note: C – pumped continuously for number of hours reported

DNAPL - dense nonaqueous-phase liquid LNAPL - light nonaqueous-phase liquid

P - pumped intermittently for number of purges indicated

TABLE A-2. OCTOBER 1994 EXTRACTION RECORD McCORMICK & BAXTER

		NAPL Remov	ved (gal)	
			Cumulative	
	Pumping	Monthly	Since	
Well ID	Frequency	Total	Feb 1993	Remarks
Tank Farm Ar		10101	1 00 1333	nemarks
	ва			
MW-Is			89.0	Wells in tank farm area are being pumped
MW-Ps			0.0	for total fluids
MW-7s			1.3	
MW-8i			0.0	
EW-1s			75.2	
EW-3s			0.0	
EW-4s			5.0	
EW-5s			0.6	
EW-7s			1.8	
EW-8s			1.8	
EW-17			3.7	
EW-18			51.9	
AT AT A STATE OF THE STATE OF T				
Total		0.0	230.3	
Tank Farm Ar	ea Beach Interc	eptor Trench		
TM-1			0	
TM-2			0	
TM-3			0	
TM-4			0	
TM-5			0	
			U	
Total		0	0	
Former West	Diagonal Association			
	Disposal Area			
MW-Ds	P3	4.9	55.2	DNAPL
MW-Es			0.0	
MW-Gs			0.5	
MW-18s			0.0	
MW-20i	P4	21.6	337.8	DNAPL
MW-21s			48.2	
EW-2s			0.6	
EW-6s			23.9	
EW-9s	P2	2.9	50.0	DNAPL
EW-10s			46.5	DIANE
EW-13			0.0	
EW-14			0.0	
EW-15	P4	8.1	77.4	LNAPL
EW-16			0.0	LINAPL
			0.0	
Total		37.4	640.0	
Other Areas				,
MW-10s			5.0	
EW-11			0.0	
EW-12			2.7	
MW-19s			0.0	
MW-22i			0.7	
			0.1	
otal		0.0	8.4	
ite Totals		37.4	878.7	
		<u> </u>	070.7	

Note: C - pumped continuously for number of hours reported

DNAPL – dense nonaqueous-phase liquid LNAPL – light nonaqueous-phase liquid

P - pumped intermittently for number of purges indicated

TABLE A-3. NOVEMBER 1994 EXTRACTION RECORD McCORMICK & BAXTER

		NAPL Remov					
	Dumaina	Monthly	Cumulative				
Well ID	Pumping	Monthly	Since				
	Frequency	Total	Feb 1993	Remarks			
Tank Farm Ar	ea						
MW-Is			89.0	Wells in tank farm area are being pumped			
MW-Ps			0.0	for total fluids			
MW-7s			1.3	TO TOTAL HOLDS			
MW-8i			0.0				
EW-1s			75.2				
EW-3s			0.0	/			
EW-4s			5.0				
EW-5s			0.6				
EW-7s			1.8				
EW-8s			1.8				
EW-17			3.7				
EW-18			51.9				
Γotal		0.0					
	Don't Live	0.0	230.3				
	ea Beach Interc	eptor Trench					
TM-1			0				
TM-2			0				
TM-3			0				
TM-4			0				
TM-5			0				
			- 0				
	Disposal Area	0	0				
ormer Waste	Disposal Area	1.4	0	DNAPI			
Former Waste MW-Ds MW-Es			<u> </u>	DNAPL			
Former Waste MW-Ds MW-Es MW-Gs			56.6	DNAPL			
MW-Ds MW-Es MW-Gs MW-18s	P2		56.6 0.0 0.5	DNAPL			
MW-Ds MW-Es MW-Gs MW-18s MW-20i			56.6 0.0				
MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s	P2	1.4	56.6 0.0 0.5 0.0 348.1	DNAPL			
MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s	P2	1.4	56.6 0.0 0.5 0.0				
MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s	P2 P2 P1	10.4	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1	DNAPL			
MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s	P2	1.4	56.6 0.0 0.5 0.0 348.1 48.2 0.6	DNAPL			
MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s	P2 P2 P1	10.4	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1	DNAPL			
MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13	P2 P2 P1	10.4	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0	DNAPL			
MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14	P2 P2 P1	10.4	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0	DNAPL			
MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15	P2 P2 P1	10.4	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0 0.0	DNAPL			
Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16	P2 P2 P1	10.4	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0	DNAPL			
MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15	P2 P2 P1	1.4 10.4 1.2 2.5	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0 0.0 77.4	DNAPL			
MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16	P2 P2 P1	10.4	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0 0.0	DNAPL			
MW-Ds MW-Es MW-Gs MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas	P2 P2 P1	1.4 10.4 1.2 2.5	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0 0.0 77.4 0.0	DNAPL			
MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas	P2 P2 P1	1.4 10.4 1.2 2.5	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0 0.0 77.4 0.0	DNAPL			
MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas MW-10s EW-11	P2 P2 P1	1.4 10.4 1.2 2.5	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0 0.0 77.4 0.0 655.5	DNAPL			
MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas MW-10s EW-11 EW-11	P2 P2 P1	1.4 10.4 1.2 2.5	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0 0.0 77.4 0.0 655.5	DNAPL			
MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas MW-10s EW-11 EW-12 MW-19s	P2 P2 P1	1.4 10.4 1.2 2.5	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0 0.0 77.4 0.0 655.5	DNAPL			
MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas MW-10s EW-11 EW-11	P2 P2 P1	1.4 10.4 1.2 2.5	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0 0.0 77.4 0.0 655.5	DNAPL			
MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas MW-10s EW-11 EW-12 MW-19s	P2 P2 P1	1.4 10.4 1.2 2.5	56.6 0.0 0.5 0.0 348.1 48.2 0.6 25.1 52.6 46.5 0.0 0.0 77.4 0.0 655.5	DNAPL			

Note: C - pumped continuously for number of hours reported DNAPL - dense nonaqueous-phase liquid LNAPL - light nonaqueous-phase liquid P - pumped intermittently for number of purges indicated

TABLE A-4. DECEMBER 1994 EXTRACTION RECORD McCORMICK & BAXTER

		NAPL Remov		
	Pumping	Monthle	Cumulative	
Well ID	Frequency	Monthly Total	Since Feb 1992	
Tank Farm Ar		TOTAL	Feb 1993	Remarks
MW-Is				
	P2	3.2	92.2	
MW-Ps			0.0	
MW-7s MW-8i	P2	0.9	2.2	
EW-1s			0.0	
EW-1s	P1	9.1	84.3	
EW-4s			0.0	
EW-5s			5.0	
EW-7s	- D4		0.6	
EW-7s EW-8s	P1	1.7	3.5	
EW-17	P1	1.7	3.5	
EW-17			3.7	
-44-10	-		51.9	
Total				
		16.5	246.8	
Tank Farm Are	ea Beach Interce	eptor Trench		
TM-1			0	
TM-2			0	
TM-3			0	
TM 4			0	
TM-4 TM-5			0	
		0	0	
TM-5	Disnosal Area	0		
TM-5 Total Former Waste	Disposal Area	0	0	
TM-5 Former Waste MW-Ds	Disposal Area	3.0	0	DNAPI
TM-5 Former Waste MW-Ds MW-Es	P2	3.0	0	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs			0 0 59.6	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s	P2	3.0	59.6 0.0	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i	P2 P2 P3	3.0	59.6 0.0 3.9	
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s	P2	3.0	59.6 0.0 3.9 0.0	DNAPL
TM-5 Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s	P2 P2 P3	3.0 3.4 15.2	59.6 0.0 3.9 0.0 363.3	
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1	
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s	P2 P2 P3	3.0 3.4 15.2	59.6 0.0 3.9 0.0 363.3 48.8 0.6	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1	
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Es MW-Iss MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15	P2 P2 P3 P1	3.0 3.4 15.2 0.6	59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0 77.4	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0 77.4	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Es MW-Iss MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16	P2 P2 P3 P1	3.0 3.4 15.2 0.6	59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0 77.4	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Es MW-Gs MW-21s EW-20i MW-21s EW-28 EW-68 EW-98 EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0 77.4 0.0	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Es MW-Gs MW-21s EW-20i MW-21s EW-28 EW-68 EW-98 EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0 77.4 0.0	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Es MW-Bs MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0 77.4 0.0 679.8	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas MW-10s EW-11 EW-12	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0 77.4 0.0 679.8	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Es MW-Gs MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas MW-10s EW-11 EW-12 MW-19s	P2 P2 P3 P1 P1	3.0 3.4 15.2 0.6 2.1	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0 77.4 0.0 679.8	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Other Areas MW-10s EW-11 EW-12	P2 P2 P3 P1	3.0 3.4 15.2 0.6	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0 77.4 0.0 679.8	DNAPL
TM-5 Total Former Waste MW-Ds MW-Es MW-Es MW-Gs MW-18s MW-20i MW-21s EW-2s EW-6s EW-9s EW-10s EW-13 EW-14 EW-15 EW-16 Total Where Areas MW-10s EW-11 EW-12 MW-19s	P2 P2 P3 P1 P1	3.0 3.4 15.2 0.6 2.1	0 59.6 0.0 3.9 0.0 363.3 48.8 0.6 25.1 54.6 46.5 0.0 0.0 77.4 0.0 679.8	DNAPL

Note: C – pumped continuously for number of hours reported

DNAPL – dense nonaqueous – phase liquid LNAPL – light nonaqueous – phase liquid

P - pumped intermittently for number of purges indicated

APPENDIX B

Laboratory Reports

17400 S.W. Upper Boones Ferry Road, Suite 270

Durham, OR. 97224

(503) 684-0447 (503) 620-0393 (FAX)

RECEIVED

NOV 1 8 1994

ATI I.D. 410529

TI

November 14, 1994

Dan Peek PTI Environmental Services 400 Kruse Way, Pl. #2-285 Lake Oswego, OR 97035

Project Name / Number: McCormick & Baxter / C4120308

Attention: Dan Peek

On October 4, 1994, Analytical Technologies, Inc. received two water samples for analysis for the above listed project. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

Please note that the TOC analysis was networked to Analytical Technologies, Inc., in Pensacola Florida.

If you have any questions or comments, please do not hesitate to contact us at (503)684-0447.

Vivian Fuchise

Project Manager

AJK:alm Enclosure Alan J. Kleinschmidt

Laboratory Manager

SAMPLE CROSS REFERENCE SHEET

CLIENT:

PTI Environmental

ATI I.D.:

410529

PROJECT #:

PROJECT NAME:

#: C41:

C4120308

McCormick & Baxter

MATRIX:

WATER

ATI #	CLIENT DESCRIPTION	DATE SAMPLED
410529-1 410529-2	GAC1-Inf GAC1-EFF	10/04/94 10/04/94

-----TOTALS-----

MATRIX WATER # SAMPLES

2

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT:

PROJECT #:

PROJECT NAME:

PTI Environmental

C4120308

McCormick & Baxter

ATI I.D.: 410529

ANALYSIS	TECHNIQUE	REFERENCE	LAB
Arsenic Copper Chromium Zinc	AA/GF ICAP ICAP ICAP	EPA 7060 EPA 6010 EPA 6010 EPA 6010	PLD PLD PLD PLD
Oil & Grease	Gravimetric	EPA 413.1	PLD
PAHs	HPLC/UV/FLUOR	EPA 8310	PLD
Penta & Tetra Chlorophenol	GC/ECD	EPA 8040	PLD
Solids, Total Suspended (TSS)	Gravimetric	EPA 160.2	PLD
тос	UV/Oxidation	EPA 415.1	PNR

PLD = ATI - Portland

R = ATI - Renton

SD = ATI - San Diego

PHX = ATI - Phoenix

PNR = ATI - Pensacola FC = ATI - Fort Collins

SUB = Subcontract

CASE NARRATIVE FOR EPA METHOD 8040M

PENTACHLOROPHENOL

ATI ACCESSION NUMBER 410529

A one liter aliquot of each aqueous sample was acidified to a pH of 2 and extracted with methylene chloride by liquid:liquid continuous method (EPA method 3520). The methylene chloride was reduced and exchanged to hexane. The phenols in the extract were derivatized using diazomethane into methyl ethers. Final volume was 5.0 ml.

The extracts were analyzed by gas chromatography using a electron capture detector (ECD). A RTX-35 megabore column was used for quantitation and a RTX-1701 megabore column, attached to a separate ECD, was used for confirmation. Five and six point calibration curves were generated and utilized for the analysis.

The sample used for the matrix spikes contained a high level of pentachlorophenol, approximately 10 times the amount spiked into the sample. The amount spiked in is insignificant to the amount in the sample. The blank spikes produced acceptable results.

BRIAN HENNES

GAS CHROMATOGRAPHY RESULTS

METHOD:

VILITIOD.

CLIENT I.D.: CLIENT:

PROJECT #:

PROJECT NAME:

8040 MOD

METHOD BLANK

PTI Environmental C4120308

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

A11 1.D..

410529-0

DATE SAMPLED:

DATE RECEIVED:

NA NA

DATE EXTRACTED:

DATE ANALYZED:

10/10/94 10/11/94

DILUTION FACTOR:

•

UNITS:

ug/L

PARAMETER

RESULTS

TETRACHLOROPHENOL (TOTAL)

< 0.20

PENTACHLOROPHENOL

< 0.05

SURROGATE:

TRIBROMOPHENOL (20% - 100%)

57%

Analyst: <u>BH 10/12/94</u>

Reviewer: 10/12/94

GAS CHROMATOGRAPHY RESULTS

METHOD:

8040 MOD

CLIENT I.D.:

GAC1-EFF

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

DATE SAMPLED:

410529-2 10/04/94

DATE RECEIVED:

10/04/94

DATE EXTRACTED:

10/04/0

DATE ANALYZED:

10/10/94

DILUTION FACTOR:

10/11/94

UNITS:

1 ug/L

PARAMETER

RESULTS

TETRACHLOROPHENOL (TOTAL)

< 0.20

PENTACHLOROPHENOL

< 0.05

SURROGATE:

TRIBROMOPHENOL (20% - 100%)

52%

Analyst: 1/4 10/12/94

Reviewer: 10/12/94

GC - SPIKE RESULTS

METHOD:

EPA 8040 M

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

TRIBROMOPHENOL

McCormick & Baxter

SAMPLE MATRIX: WATER ATI I.D.:

DATE EXTRACTED:

DATE ANALYZED:

QC ID:

410529

METHOD BLANK

- 65

10/10/94

10/11/94

UNITS:

ug/L

					DUP	DUP	
	SAMPLE	SPIKE	SPIKED	%	SPIKED	%	
PARAMETER	RESULT	ADDED	RESULT	REC	SAMPLE	REC	RPD
TETRACHLOROPHENOL (TOTAL)	< 0.20	2.00	1.47	74	1.48	74	1
PENTACHLOROPHENOL	< 0.05	0.50	0.65	130	0.63	126	3
TETRACHLOROPHENOL (TOTAL) PENTACHLOROPHENOL	cc	NTROL LIMI	тѕ	20-138 20-138			35 35
SURROGATE		SPIKE			DUP SPIKE		LIMITS

58

ANALYST: <u>DH 10/12/42</u>
REVIEWER: 1/10/12/94

20-100

GC - SPIKE RESULTS

METHOD:

EPA 8040 M

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

WATER SAMPLE MATRIX:

ATI I.D.:

410529

QC ID:

410553-1

DATE EXTRACTED: DATE ANALYZED:

10/10/94

UNITS:

10/11/94 ug/L

					DUP	DUP	
	SAMPLE	SPIKE	SPIKED	%	SPIKED	%	
PARAMETER	RESULT	ADDED	RESULT	REC	SAMPLE	REC	RPD
TETRACHLOROPHENOL (TOTAL)	0.69	2.00	2.01	66	2.01	66	0
PENTACHLOROPHENOL	5.8	0.50	5.95	30	5.39	- 82 G	10
TETRACHLOROPHENOL (TOTAL) PENTACHLOROPHENOL	cc	NTROL LIMI	τs	20-138 20-138			35 35
SURROGATE TRIBROMOPHENOL		SPIKE 69			DUP SPIKE		LIMIT:

G = OUT OF LIMITS DUE TO HIGH LEVELS OF TARGET ANALYTES IN SAMPLE.

METHOD:

8310

CLIENT I.D.:

METHOD BLANK

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

BIPHENYL (29%-120%)

WATER

ATI I.D.:

410529-0

DATE SAMPLED:

NA

DATE RECEIVED:

NA

DATE EXTRACTED:

10/04/94

DATE ANALYZED: DILUTION FACTOR: 10/06/94

UNITS:

1 ug/L

PARAMETER	RE	SULTS	
NAPHTHALENE	<	0.5	
ACENAPHTHYLENE	<	1.0	
ACENAPHTHENE	<	0.5	
FLUORENE	<	0.1	
PHENANTHRENE	<	0.05	
ANTHRACENE	<	0.05	
FLUORANTHENE	<	0.1	
PYRENE	<	0.1	
BENZO(a)ANTHRACENE	<	0.1	
CHRYSENE	<	0.1	
BENZO(b)FLUORANTHENE	<	0.1	
BENZO(k)FLUORANTHENE	<	0.1	
BENZO(a)PYRENE	<	0.1	
DIBENZO(a,h)ANTHRACENE	<	0.2	
DIBENZO(a,h)ANTHRACENE BENZO(g,h,i)PERYLENE	<	0.1	
INDENO(1,2,3-cd)PYRENE	<	0.1	
SURROGATE:			

55%

Analyst: 10-10-94

Reviewer: BH 10-10-94

METHOD:

8310

ATI I.D.:

410529-2

CLIENT I.D.:

GAC1-EFF

10/04/94

CLIENT: PROJECT #: PTI Environmental

10/04/94

PROJECT NAME:

C4120308

10/04/94

SAMPLE MATRIX:

McCormick & Baxter

10/06/94

WATER

DILUTION FACTOR: UNITS:

DATE SAMPLED:

DATE RECEIVED:

DATE EXTRACTED:

DATE ANALYZED:

ug/L

PARAMETER	R	ESULTS	
NAPHTHALENE	<	0.5	
ACENAPHTHYLENE	<	1.0	
ACENAPHTHENE	<	0.5	
FLUORENE	<	0.1	
PHENANTHRENE	<	0.05	
ANTHRACENE	<	0.05	
FLUORANTHENE	<	0.1	
PYRENE	<	0.1	
BENZO(a)ANTHRACENE	<	0.1	
CHRYSENE	<	0.1	
BENZO(b)FLUORANTHENE	<	0.1	
BENZO(k)FLUORANTHENE	<	0.1	
BENZO(a)PYRENE	<	0.1	
DIBENZO(a,h)ANTHRACENE	<	0.2	
BENZO(g,h,i)PERYLENE	<	0.1	
INDENO(1,2,3-cd)PYRENE	<	0.1	
SURROGATE:			
BIPHENYL (29%-120%)		56%	

LIQUID CHROMATOGRAPHY BLANK SPIKE RESULTS

METHOD:

CLIENT:

PROJECT #:

PROJECT NAME: SAMPLE MATRIX: 8310

PTI Environmental

C4120308

McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE:

DATE EXTRACTED:

DATE ANALYZED: DILUTION FACTOR:

UNITS:

410529

Method Blank

0/04/04

10/04/94

10/00

ug/L

						DUP.	DUP.	
		SAMPLE	SPIKE	SPIKED	%	SPIKED	%	
PARAMETER		RESULT	CONC.	RESULT	REC.	RESULT	REC.	RPD
ACENAPHTHYLENE	<	1.0	7.5	3.7	49	5.5	73	39
PHENANTHRENE	<	0.05	1.0	0.63	63	0.65	65	3
PYRENE	<	0.1	1.0	0.8	80	0.8	80	0
BENZO(k)FLUORANTHENE	<	0.1	1.0	0.8	80	0.8	80	0
DIBENZO(a,h)ANTHRACENE	<	0.2	1.0	0.9	90	0.9	90	0
SURROGATE:								
BIPHENYL (21% - 149%)				54%		55%		
	C	ONTROL LIMI	TS					
					% REC			RPD
ACENAPHTHYLENE					48-112			50
PHENANTHRENE					63-134			36
PYRENE					80-140			40
BENZO(k)FLUORANTHENE					64-120			36
DIBENZO(a,h)ANTHRACENE					53-191			40

Analyst: 10-10-94

Reviewer: 14 10-10-94

METALS RESULTS

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410529-0 NA

DATE SAMPLED: DATE RECEIVED:

NA

DATE DIGESTED:

DATE DIGESTED.

10/05,11/94 10/05,12/94

DATE ANALYZED: DILUTION FACTOR:

UNITS:

mg/L

1

PARAMETER	RESULTS	METHOD
ARSENIC	< 0.005	7060
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
ZINC	< 0.01	6010

Analyst: 11.0(12/94

Reviewer: 11.10/31/94

METALS RESULTS

CLIENT I.D.:

GAC1-Inf

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410529-1

DATE SAMPLED:

10/04/94

DATE RECEIVED:

10/04/94

DATE DIGESTED:

10/05,11/94

DATE ANALYZED:

10/05,12/94

DILUTION FACTOR: UNITS:

PARAMETER	RESULTS	METHOD
ARSENIC	< 0.005	7060
CHROMIUM	< 0.01	6010
COPPER	0.03	6010
ZINC	0.19	6010

METALS RESULTS

CLIENT I.D.:

GAC1-EFF

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

410529-2

DATE SAMPLED:

10/04/94

DATE RECEIVED: DATE DIGESTED: 10/04/94

DATE ANALYZED:

10/05,11/94 10/05,12/94

DILUTION FACTOR:

1

UNITS:

mg/L

PARAMETER	RESULTS	METHOD
ARSENIC	0.036	7060
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
ZINC	0.06	6010

Analyst: 10,1-101121901

Reviewer: 11-103194

METALS DUPLICATE RESULTS

METHOD: CLIENT:

PROJECT #: PROJECT NAME:

SAMPLE MATRIX:

6010 / 7000 series PTI Environmental

C4120308 McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE: DATE DIGESTED: DATE ANALYZED:

DILUTION FACTOR: UNITS:

410529 410529-1

10/05,11/94 10/05,12/94

PARAMETER	SAMPLE RESULT	DUPLICATE RESULT	RPD	RPD CONTROL LIMIT
ARSENIC	< 0.005	< 0.005	NA	20
CHROMIUM	< 0.01	< 0.01	NA	20
COPPER	0.03	0.02	40 *	20
ZINC	0.19	0.19	0	20

^{*} Duplicate control limit not applicable. The sample is less than five times the MRL.

METALS SPIKE RESULTS

METHOD: CLIENT:

PROJECT #:

6010 / 7000 series PTI Environmental

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

QC SAMPLE:

DATE DIGESTED:

DATE ANALYZED:

DILUTION FACTOR:

UNITS:

410529

410529-1

10/05,11/94

10/05,12/94

1

	SAMPLE	SPIKE	SPIKE	%	CONTROL
PARAMETER	RESULT	CONC	RESULT	RECOV	LIMIT
ARSENIC	< 0.005	0.040	0.043	108	75-125%
CHROMIUM	< 0.01	1.00	0.92	92	75-125%
COPPER	0.03	1.00	0.92	89	75-125%
ZINC	0.19	1.00	1.10	91	75-125%

TOTAL ORGANIC CARBON (TOC) RESULTS

METHOD:

CLIENT:

PROJECT #:
PROJECT NAME:

SAMPLE MATRIX:

EPA 415.1

PTI Environmental

C4120308

McCormick & Baxter

WATER

ATI I.D.:

DATE SAMPLED:

DATE RECEIVED:

DATE ANALYZED:

UNITS:

410529

10/04/94

10/04/94

10/13/94

ATI I.D.	CLIENT I.D.	MRL	RESULTS	
410529-0	Method Blank	1	. < 1	
410529-2	GAC1-EFF	1	< 1	

TOTAL ORGANIC CARBON (TOC) SPIKE RESULTS

TEST:

EPA 415.1

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI ACCESSION:

QC SAMPLE:

DATE ANALYZED:

DILUTION FACTOR:

UNITS:

410529

IN HOUSE

10/13/94

1

mg/L

PARAMETER	SAMPLE RESULT	SPIKE CONC.	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
тос	< 1	6.7	6.2	93	5.9	88	6

CONTROL LIMITS

%REC

RPD 30

TOC

50 - 129

INORGANIC CHRONICLE

CLIENT:

PTI Environmental

ATI I.D.:

410529

PROJECT #: C4120308

DATE SAMPLED:

10/04/94

PROJECT NAME: McCormick & Baxter

DATE RECEIVED:

10/04/94

SAMPLE MATRIX WATER

PARAMETER	EPA METHOD	DATE ANALYZED	
OIL AND GREASE	413.1	10/09/94	
SOLIDS, TOTAL SUSPENDED (TSS)	160.2	10/06/94	

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #: C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410529-0

DATE SAMPLED:

N/A

DATE RECEIVED:

N/A

UNITS:

PARAMETER	EPA METHOD	RESULTS	
OIL AND GREASE	413.1	< 1	
SOLIDS, TOTAL SUSPENDED (TSS)	160.2	< 5	

CLIENT I.D.:

GAC1-Inf

CLIENT:

PTI Environmental

PROJECT #: C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410529-1

DATE SAMPLED:

10/04/94

DATE RECEIVED:

10/04/94

UNITS:

PARAMETER	EPA METHOD	RESULTS	
SOLIDS, TOTAL SUSPENDED (TSS)	160.2	18	

CLIENT I.D.:

GAC1-Eff

CLIENT:

PTI Environmental

PROJECT #: C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410529-2

DATE SAMPLED: 10/04/94

DATE RECEIVED:

10/04/94

UNITS:

PARAMETER	EPA METHOD	RESULTS	
OIL AND GREASE	413.1	< 1	
SOLIDS, TOTAL SUSPENDED (TSS)	160.2	< 5	

INORGANIC DUPLICATE RESULTS

CLIENT:

PTI Environmental

PROJECT #: C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.: QC SAMPLE: 410529 410529-1

DATE SAMPLED: DATE RECEIVED: 10/04/94 10/04/94

UNITS:

	EPA	SAMPLE	DUP. SAMPLE	%	CONTROL LIMITS % RPD
PARAMETER	METHOD	RESULT	RESULT	RPD	% RPD
OIL AND GREASE *	413.1	3	3 -	0	20
SOLIDS, TOTAL SUSPENDED (TSS)	160.2	18	20	11	20

^{*} QC performed on sample #410553-1

INORGANIC SPIKE RESULTS

CLIENT:

PTI Environmental

PROJECT #:

C4120308 PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

QC SAMPLE:

410529

410529-2

DATE SAMPLED:

10/04/94

DATE RECEIVED:

10/04/94

UNITS:

				SPIKE		CONTROL LIMITS
	EPA	SAMPLE	SPIKE	SAMPLE	%	%
PARAMETER	METHOD	RESULT	CONC.	RESULT	REC	REC
OIL AND GREASE	413.1	< 1	50	49	98	75 - 125

PTI ENVIRONMENTAL SERVICES

CHAIN OF CUSTODY RECORD/ SAMPLE ANALYSIS REQUEST FORM

1217 Page L of L

		_							_		/_					-	<u> </u>			
Project: (Nam	ne and Number)	up to	-(0	41.	203	308	()	6	50	ill.	2		nplers		iture)		to at		e. }	Phone: 503-636-4338
Sample No.	Tag No.	Date	Time			Sa	ample	Matrix	(Analy	Ses R	eques	ted 5			Ship Samples to: ATI
		54		Water	Sediment	Tissue	Soil	Air	Other	Concentration (L M H)	Composite or Grab	Actis 22	-	8310	Oil & Chravian	70C	80407	Extra Container	Archive	Attn: Alan Remarks
GACL-T.F	76758	6-4	11.75	M									X							
	76757											X								410529
SACI-FEE	76759	115-4	1125	5								X								
	76760	1	1	X								1	X							
ACIEFF		10-4		X										X						
•	101			1										X				X		
	76762	1	1	(X								-		/	X					
	76.763		1125												X			X		
ACI FAF	76765		1125						 	-						X		1		
	76766															1	X			
	1	1	1234														X	×		
0/101/-1-1	16/6/	10.1	1627	1																
							-													
						Con	dition	of Sam	nlos											
Method of Ship	oment: PT	I Co	ur.a	~			n Rece			000	\				Cust	ody Se	eal Inta	act: Y	es 🗌	No None Broken by:
Relinquished by	(6	20	rep						Rec	eived b	y:		1	W.	11	Bu	el	<u> </u>		Date/Time 10-9-94 12
elinquished by		May	(Signal (Signal	lure) IM/ lure)	_	_			Rec	eived b	y: <u>_</u>	K	11	1	11	(Sid	nature)	AT	I-f	Date/Time 10-4-94 12 Date/Time 10/4/94 15
Relinquished by	:		(Signat	ture)					. Rec	eived b	y Mob	oile Lat	o for F	eld An	alysis			(5	Signature	Date/Time
		tra							Rec	eived f	or Lab	by:					(Signatu	re)		Date/Time

RUSH

Distribution: Original and One Copy - Accompany Shipment; One Copy - Project File

FF Rev 1/91

ATI I.D. 410553

October 12, 1994

Dan Peek PTI Environmental Services 400 Kruse Way, Pl. #2-285 Lake Oswego, OR 97035

Project Name / Number: McCormick & Baxter / C4120308

Attention: Dan Peek

On October 6, 1994, Analytical Technologies, Inc. received two water samples for analysis for the above listed project. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (503)684-0447.

Vivian Fuchise Project Manager

Alan J. Kleinschmidt Laboratory Manager

AJK:alm Enclosure

SAMPLE CROSS REFERENCE SHEET

CLIENT:

PROJECT NAME:

PTI Environmental

ATI I.D.:

410553

PROJECT #:

C4120308

McCormick & Baxter

MATRIX:

WATER

ATI #	ATI # CLIENT DESCRIPTION				
410553-1	GWC2-In	10/06/94			
410553-2	GWC2-EFF	10/06/94			

-----TOTALS-----

MATRIX WATER

SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT:

PROJECT #:

PROJECT NAME:

PTI Environmental

C4120308

McCormick & Baxter

ATI I.D.:

410553

ANALYSIS	TECHNIQUE	REFERENCE	LAB
PAHs	HPLC/UV/FLUOR	EPA 8310	PLD
Penta / Tetrachlorophenol	GC/ECD	EPA 8040	PLD
Oil & Grease	Gravimetric	EPA 413.1	PLD

PLD = ATI - Portland

= ATI - Renton

= ATI - San Diego SD

PHX = ATI - Phoenix PNR = ATI - Pensacola

= ATI - Fort Collins FC

SUB = Subcontract

CASE NARRATIVE FOR EPA METHOD 8040M

PENTACHLOROPHENOL

ATI ACCESSION NUMBER 410553

A one liter aliquot of each aqueous sample was acidified to a pH of 2 and extracted with methylene chloride by liquid:liquid continuous method (EPA method 3520). The methylene chloride was reduced and exchanged to hexane. The phenols in the extract were derivatized using diazomethane into methyl ethers. Final volume was 5.0 ml.

The extracts were analyzed by gas chromatography using a electron capture detector (ECD). A RTX-35 megabore column was used for quantitation and a RTX-1701 megabore column, attached to a separate ECD, was used for confirmation. Five and six point calibration curves were generated and utilized for the analysis.

The sample used for the matrix spikes contained a high level of pentachlorophenol, approximately 10 times the amount spiked into the sample. The amount spiked in is insignificant to the amount in the sample. The blank spikes produced acceptable results.

BRIAN HENNES

GAS CHROMATOGRAPHY RESULTS

METHOD:

8040 MOD

CLIENT I.D.:

METHOD BLANK

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

410553-0

DATE SAMPLED:

NA

DATE RECEIVED:

NA

DATE EXTRACTED:

10/10/94

DATE ANALYZED: **DILUTION FACTOR:** 10/11/94

UNITS:

ug/L

PARAMETER

RESULTS

TETRACHLOROPHENOL (TOTAL)

0.20

PENTACHLOROPHENOL

0.05

SURROGATE:

TRIBROMOPHENOL (20% - 100%)

57%

Analyst: <u>BH 10/12/94</u>

Reviewer: 10/12/94

GAS CHROMATOGRAPHY RESULTS

METHOD:

8040 MOD

CLIENT I.D.:

GWC2-In

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

410553-1

DATE SAMPLED:

DILUTION FACTOR:

10/06/94

DATE RECEIVED:

10/06/94

DATE EXTRACTED:

10/10/94

DATE ANALYZED:

10/11/94

UNITS:

1 ug/L

PARAMETER

RESULTS

TETRACHLOROPHENOL (TOTAL)

0.69

PENTACHLOROPHENOL

5.8

SURROGATE:

TRIBROMOPHENOL (20% - 100%)

83%

GAS CHROMATOGRAPHY RESULTS

METHOD:

8040 MOD

CLIENT I.D.:

GWC2-EFF

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

410553-2

DATE SAMPLED:

10/06/94

DATE RECEIVED:

10/06/94

DATE EXTRACTED:

10/10/94

DATE ANALYZED: DILUTION FACTOR: 10/11/94

UNITS:

ug/L

PARAMETER

TETRACHLOROPHENOL (TOTAL)

< 0.20

RESULTS

PENTACHLOROPHENOL

< 0.05

SURROGATE:

TRIBROMOPHENOL (20% - 100%)

65%

Analyst: BH 10/12/94

Reviewer: 10/12/94

GC - SPIKE RESULTS

METHOD:

CLIENT:

EPA 8040 M

WATER

PTI Environmental

PROJECT #:

C4120308 McCormick & Baxter

PROJECT NAME: SAMPLE MATRIX:

TRIBROMOPHENOL

QC ID:

DATE EXTRACTED:

DATE ANALYZED:

UNITS:

ATI I.D.:

410553

410553-1

10/10/94

10/11/94

ug/L

66

					DUP	DUP	
	SAMPLE	SPIKE	SPIKED	%	SPIKED	%	
PARAMETER	RESULT	ADDED	RESULT	REC	SAMPLE	REC	RPD
TETRACHLOROPHENOL (TOTAL)	0.69	2.00	2.01	66	2.01	66	0
PENTACHLOROPHENOL	5.8	0.50	5.95	30	5.39	- 82 G	10
TETRACHLOROPHENOL (TOTAL) PENTACHLOROPHENOL	co	NTROL LIMI	тѕ	20-138 20-138			35 35

69

G = OUT OF LIMITS DUE TO HIGH LEVELS OF TARGET ANALYTES IN SAMPLE.

ANALYST: 35 10/12/94

REVIEWER: 11/10/12/94

20-100

GC - SPIKE RESULTS

METHOD:

EPA 8040 M

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

QC ID:

DATE EXTRACTED: DATE ANALYZED:

UNITS:

410553

METHOD BLANK

10/10/94

10/11/94

ug/L

					DUP	DUP	
	SAMPLE	SPIKE	SPIKED	%	SPIKED	%	
PARAMETER	RESULT	ADDED	RESULT	REC	SAMPLE	REC	RPD
TETRACHLOROPHENOL (TOTAL)	< 0.20	2.00	1.47	74	1.48	74	1
PENTACHLOROPHENOL	< 0.05	0.50	0.65	130	0.63	126	3
	CO	NTROL LIMI	re				
TETRACHLOROPHENOL (TOTAL)		NINGE LIMI	13	20-138			35
PENTACHLOROPHENOL				20-138			35
PENTACHEOROTHENCE				20-130			33
SURROGATE		SPIKE			DUP SPIKE		LIMITS
TRIBROMOPHENOL		58			65		20-100

ANALYST: SH 10/12/99

REVIEWER: 10/12/99

METHOD:

8310

CLIENT I.D.:

METHOD BLANK

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

410553-0

DATE SAMPLED:

10/06/94

DATE RECEIVED:

10/06/94

DATE EXTRACTED:

10/07/94

DATE ANALYZED: **DILUTION FACTOR:** 10/10/94

UNITS:

1

ug/L

PARAMETER	RE	SULTS
NAPHTHALENE	<	0.5
ACENAPHTHYLENE	<	1.0
ACENAPHTHENE	<	0.5
FLUORENE	<	0.1
PHENANTHRENE	<	0.05
ANTHRACENE	<	0.05
FLUORANTHENE	<	0.1
PYRENE	<	0.1
BENZO(a)ANTHRACENE	<	0.1
CHRYSENE	<	0.1
BENZO(b)FLUORANTHENE	<	0.1
BENZO(k)FLUORANTHENE	<	0.1
BENZO(a)PYRENE	<	0.1
DIBENZO(a,h)ANTHRACENE	<	0.2
BENZO(g,h,i)PERYLENE	<	0.1
INDENO(1,2,3-cd)PYRENE	<	0.1
SURROGATE:		

BIPHENYL (29%-120%)

64%

METHOD:

8310

CLIENT I.D.:

GWC2-In

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

·····

WATER

ATI I.D.:

DATE SAMPLED:

410553-1

ъ,

10/06/94

DATE RECEIVED: DATE EXTRACTED: 10/06/94

DATE ANALYZED:

10/07/94 10/10/94

DILUTION FACTOR:

1

UNITS:

ug/L

PARAMETER	RESULTS
NAPHTHALENE	370 D
ACENAPHTHYLENE	19
ACENAPHTHENE	150 D
FLUORENE	70 D
PHENANTHRENE	50 D
ANTHRACENE	5.0
FLUORANTHENE	5.8
PYRENE	1.8
BENZO(a)ANTHRACENE	0.2
CHRYSENE	< 0.1
BENZO(b)FLUORANTHENE	< 0.1
BENZO(k)FLUORANTHENE	< 0.1
BENZO(a)PYRENE	< 0.1
DIBENZO(a,h)ANTHRACENE	< 0.2
BENZO(g,h,i)PERYLENE	< 0.1
INDENO(1,2,3-cd)PYRENE	< 0.1
SURROGATE:	
BIPHENYL (29%-120%)	57%
120,0	

D = VALUE FROM A 10 FOLD DILUTION ANALYZED 10/11/94

Analyst: 10/11/99

Reviewer: 1/0/11/89

METHOD:

8310

CLIENT I.D.:

GWC2-EFF

CLIENT:

PTI Environmental

PROJECT #:

PARAMETER

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

410553-2

DATE SAMPLED:

10/06/94

DATE RECEIVED:

DILUTION FACTOR:

10/06/94

DATE EXTRACTED:

10/07/94

DATE ANALYZED:

10/10/94

UNITS:

1 ug/L

_	_	 	
	-		rs

NAPHTHALENE	<	0.5
ACENAPHTHYLENE	<	1.0
ACENAPHTHENE	<	0.5
FLUORENE	<	0.1
PHENANTHRENE	<	0.05
ANTHRACENE	<	0.05
FLUORANTHENE	<	0.1
PYRENE	<	0.1
BENZO(a)ANTHRACENE	<	0.1
CHRYSENE	<	0.1
BENZO(b)FLUORANTHENE	<	0.1
BENZO(k)FLUORANTHENE	<	0.1
BENZO(a)PYRENE	<	0.1
DIBENZO(a,h)ANTHRACENE	<	0.2
BENZO(g,h,i)PERYLENE	<	0.1
INDENO(1,2,3-cd)PYRENE	<	0.1

SURROGATE:

BIPHENYL (29%-120%)

81%

Analyst: 1 /6/11/94

Reviewer: 1 /0/11/94

LIQUID CHROMATOGRAPHY BLANK SPIKE RESULTS

METHOD:

8310

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

QC SAMPLE:

DATE EXTRACTED:

DATE ANALYZED:

DILUTION FACTOR:

UNITS:

410553

Method Blank

10/07/94

10/11/94

1

ug/L

						DUP.	DUP.	
		SAMPLE	SPIKE	SPIKED	%	SPIKED	%	
PARAMETER		RESULT	CONC.	RESULT	REC.	RESULT	REC.	RPD
ACENAPHTHYLENE	<	1.0	10.0	5.1	51	5.6	56	9
PHENANTHRENE	<	0.05	1.0	0.84	84	0.87	87	4
PYRENE	<	0.1	1.0	0.9	90	1.0	100	11
BENZO(k)FLUORANTHENE	<	0.1	1.0	0.8	80	0.9	90	12
DIBENZO(a,h)ANTHRACENE	<	0.2	1.0	1.0	100	0.9	90	11
SURROGATE:								
BIPHENYL (21% - 149%)				80%		84%		
	С	ONTROL LIMI	TS					
					% REC .			RPD
ACENAPHTHYLENE					48-112			50
PHENANTHRENE					63-134			36
PYRENE					80-140			40
BENZO(k)FLUORANTHENE					64-120			36
DIBENZO(a,h)ANTHRACENE					53-191			40

Analyst: 10111999
Reviewer: 04 1011199

INORGANIC CHRONICLE

CLIENT:

PTI Environmental

PROJECT #: C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX WATER

ATI I.D.:

410553

DATE SAMPLED:

10/06/94

DATE RECEIVED:

10/06/94

PARAMETER	EPA METHOD	DATE ANALYZED	LYZED	
OIL AND GREASE	413.1	10/09/94		

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410553-0

DATE SAMPLED:

N/A

DATE RECEIVED:

N/A

UNITS:

PARAMETER	EPA METHOD	RESULTS		
OIL AND GREASE	413.1	< 1		

CLIENT I.D.:

GWC2-In

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410553-1

DATE SAMPLED:

10/06/94

DATE RECEIVED:

10/06/94

UNITS:

PARAMETER	EPA METHOD	RESULTS		
OIL AND GREASE	413.1	3		

CLIENT I.D.:

GWC2-Eff

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410553-2

DATE SAMPLED:

10/06/94

DATE RECEIVED:

10/06/94

UNITS:

PARAMETER	EPA METHOD	RESULTS		
OIL AND GREASE	413.1	< 1		

INORGANIC DUPLICATE RESULTS

CLIENT:

PTI Environmental

PROJECT #:

C4120308 McCormick & Baxter

PROJECT NAME: SAMPLE MATRIX: WATER

ATI I.D.:

410553 410553-1

QC SAMPLE: DATE SAMPLED:

10/06/94

DATE RECEIVED:

10/06/94

UNITS:

PARAMETER	EPA METHOD	SAMPLE RESULT	DUP. SAMPLE RESULT	% RPD	CONTROL LIMITS % RPD
OIL AND GREASE	413.1	3	3	0	20

INORGANIC SPIKE RESULTS

CLIENT:

PTI Environmental

PROJECT #:

C4120308 PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410553

QC SAMPLE:

410529-2

DATE SAMPLED: DATE RECEIVED: N/A

UNITS:

N/A mg/L

				SPIKE		CONTROL LIMITS
	EPA	SAMPLE	SPIKE	SAMPLE	%	%
PARAMETER	METHOD	RESULT	CONC.	RESULT	REC	REC
OIL AND GREASE	413.1	< 1	50	49	98	75 - 125

PTI ENVIRONMENTAL SERVICES

CHAIN OF CUSTODY RECORD/ SAMPLE ANALYSIS REQUEST FORM

1219 Page 1 of 1

Project: (Name and Number) Mc Gran (2 5 Caxter C4120308									(for	hu	Sarr		(Signa	ture)				Sampling Contact: Steve Buntt Phone: 503-636-4338	
	Sample No.	Tag No.	Date	Time					Matrix	/	/					ses Reque	sted		1.	Ship Samples to: ATA
	4105	53	194		Water	Sediment	Tissue	Soil	Air	Other	Concentration (L M H)	Composite or Grab	958	80 10 Per	Oil & Greass			Extra Container	Archive	Attn:
/	GWCZ-In	76789	10-6	1530	S						4		X							
	SWCZ-I'A		10%	1530	×								X					X		
	Swc2 In	76791		1530	70						1			X			-	3.5		9310 4 Oxbr Dul Mar, 19/19/94
		76792			X						1	-		X			-	X		8040 - I week
1	CWC2 In				7						-	-			X			~		
/		76794	1	1 .	7						+	-	X	-				X		RUSH
/		76782			Ta								X					X		
		: 767.85	1	1	X								1		X			/		
		76786			×			•							X			X		
	JWCZ-FF	-76787	10-6	1418	4				147		1			X						
/	GWC2-EE	F76788	10-6	1418	X			-			V			X	•		-	X		
												-								
							Cond	dition o	of Sam	ples		11.	1							Clas
	Method of Ship	oment:	a	(au	n	_		Rece		d	100	de	DIC			Custody S	eal Inta	ict: Ye	es 🔼	No None Broken by:
	Relinquished by:									Received by: Cop P. Petro					let	Date/Time 10/6/94 1546 Date/Time 10/6/94 1625				
Rélinquished by: /// (Signature)							Received by: (Signature)					11/2/ (Sig	Date/Time 10/6/97 1623							
	Relinquished by	:		(Signat	ure)			-		Rece	eived b	y Mob	ile Lab	for Fi	eld An	alysis:		(S	ignature	Date/Time
(Signature)								Rece	eived f	or Lab	by:				(Signatur	e)		Date/Time		

17400 S.W. Upper Boones Ferry Road, Suite 270

Durham, OR. 97224

(503) 684-0447 (503) 620-0393 (FAX)

OCT 3 1 1994

ATI I.D. 410662

PTI

October 26, 1994

Dan Peek PTI Environmental Services 400 Kruse Way, Pl. #2-285 Lake Oswego, OR 97035

Project Name / Number: McCormick & Baxter C4120308

Attention: Dan Peek

On October 18, 1994, Analytical Technologies, Inc. received one water sample for analysis for the above listed project. The sample was analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (503)684-0447.

Vivian Fuchise

Project Manager

AJK:alm Enclosure Alan J. Kleinschmidt

Laboratory Manager

SAMPLE CROSS REFERENCE SHEET

CLIENT:

PTI Environmental

ATI I.D.:

410662

PROJECT #: PROJECT NAME:

C4120308

McCormick & Baxter

MATRIX:

WATER

ATI #	CLIENT DESCRIPTION	DATE SAMPLED

410662-1

BT3-1

10/17/94

-----TOTALS-----

MATRIX WATER

SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT:

PROJECT #:

PROJECT NAME:

PTI Environmental ATI I.D.:

C4120308

McCormick & Baxter

410662

ANALYSIS	TECHNIQUE	REFERENCE	LAB
Penta & Tetrachlorophenol	GC/ECD	EPA 8040	PLD
PAHs	HPLC/UV/FLUOR	EPA 8310	PLD
Arsenic Chromium Zinc Copper	AA/GF ICAP ICAP ICAP	EPA 7060 EPA 6010 EPA 6010	PLD PLD PLD PLD
Hexavalent Chromium	Colorimetric	EPA 7196	PLD

PLD = ATI - Portland R = ATI - Renton

SD = ATI - San Diego PHX = ATI - Phoenix

PNR = ATI - Pensacola FC = ATI - Fort Collins

SUB = Subcontract

GAS CHROMATOGRAPHY RESULTS

METHOD:

8040 MOD

CLIENT I.D.:

METHOD BLANK

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: SAMPLE MATRIX: McCormick & Baxter

WATER

ATI I.D.:

410662-0

DATE SAMPLED:

NA

DATE RECEIVED:

NA

DATE EXTRACTED:

10/18/94

DATE ANALYZED: DILUTION FACTOR: 10/24/94

UNITS:

1 ug/L

PARAMETER

RESULTS

TETRACHLOROPHENOL (TOTAL)

< 0.20

PENTACHLOROPHENOL

< 0.05

SURROGATE:

TRIBROMOPHENOL (20% - 100%)

77%

Analyst: 110-25-99

Reviewer:__/

GAS CHROMATOGRAPHY RESULTS

METHOD:

8040 MOD

CLIENT I.D.:

BT3-1

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

410662-1

DATE SAMPLED:

10/17/94

DATE RECEIVED:

10/18/94

DATE EXTRACTED:

10/18/94

DATE ANALYZED:

10/24/94

DILUTION FACTOR: UNITS:

1

ug/L

PARAMETER

RESULTS

TETRACHLOROPHENOL (TOTAL)

< 0.20

PENTACHLOROPHENOL

0.16

SURROGATE:

TRIBROMOPHENOL (20% - 100%)

68%

Analyst: 19 10-25-94

Reviewer: 10-25-9

GC - SPIKE RESULTS

METHOD:

EPA 8040 M

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: SAMPLE MATRIX:

TRIBROMOPHENOL

McCormick & Baxter

WATER

ATI I.D.:

QC ID:

DATE EXTRACTED:

DATE ANALYZED:

UNITS:

410553

METHOD BLANK

10/18/94 10/24/94

ug/L

69

20-100

					DUP	DUP	
	SAMPLE	SPIKE	SPIKED	%	SPIKED	%	
PARAMETER	RESULT	ADDED	RESULT	REC	SAMPLE	REC	RPD
TETRACHLOROPHENOL (TOTAL)	< 0.20	2.00	1.32	66	1.84	92	33
PENTACHLOROPHENOL	< 0.05	0.50	0.46	92	0.65	130	34
	CO	NTROL LIMIT	TS				
TETRACHLOROPHENOL (TOTAL)				20-138			35
PENTACHLOROPHENOL				20-138			35
SURROGATE		SPIKE			DUP SPIKE		LIMITS

51

ANALYST BH 10 2594 REVIEWER: 10/25/94

LIQUID CHROMATOGRAPHY RESULTS

METHOD:

8310

CLIENT I.D.:

METHOD BLANK

CLIENT:

PTI Environmental C4120308

PROJECT #:
PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

410662-0

DATE SAMPLED:

NA NA

DATE RECEIVED: DATE EXTRACTED:

10/24/94

DATE ANALYZED:

10/25/94

DILUTION FACTOR:

1

UNITS:

ug/L

PARAMETER	RE	SULTS
NAPHTHALENE	<	0.5
ACENAPHTHYLENE	<	1.0
ACENAPHTHENE	<	0.5
FLUORENE	<	0.1
PHENANTHRENE	<	0.05
ANTHRACENE	<	0.05
FLUORANTHENE	<	0.1
PYRENE	<	0.1
BENZO(a)ANTHRACENE	<	0.1
CHRYSENE	<	0.1
BENZO(b)FLUORANTHENE	<	0.1
BENZO(k)FLUORANTHENE	<	0.1
BENZO(a)PYRENE	<	0.1
DIBENZO(a,h)ANTHRACENE	<	0.2
BENZO(g,h,i)PERYLENE	<	0.1
INDENO(1,2,3-cd)PYRENE	<	0.1
SURROGATE:		
BIPHENYL (29%-120%)		69%

Analyst: 14 10 - 35-94

Reviewer: 10 | 25 | 94

LIQUID CHROMATOGRAPHY RESULTS

METHOD:

8310

410662-1

CLIENT I.D.:

BT3-1

CLIENT:

PTI Environmental

10/17/94

PROJECT #:

C4120308

WATER

10/18/94

PROJECT NAME:

10/24/94 10/25/94

SAMPLE MATRIX:

McCormick & Baxter

DATE ANALYZED: **DILUTION FACTOR:** 1

UNITS:

ATI I.D.:

DATE SAMPLED:

DATE RECEIVED:

DATE EXTRACTED:

ug/L

PARAMETER

RESULTS

NAPHTHALENE	<	0.5
ACENAPHTHYLENE	<	1.0
ACENAPHTHENE	<	0.5
FLUORENE	<	0.1
PHENANTHRENE	<	0.05
ANTHRACENE	<	0.05
FLUORANTHENE	<	0.1
PYRENE	<	0.1
BENZO(a)ANTHRACENE	<	0.1
CHRYSENE	<	0.1
BENZO(b)FLUORANTHENE	<	0.1
BENZO(k)FLUORANTHENE	<	0.1
BENZO(a)PYRENE	<	0.1
DIBENZO(a,h)ANTHRACENE	<	0.2
BENZO(g,h,i)PERYLENE	<	0.1
INDENO(1,2,3-cd)PYRENE	<	0.1

SURROGATE:

BIPHENYL (29%-120%)

65%

LIQUID CHROMATOGRAPHY BLANK SPIKE RESULTS

METHOD:

8310

ATI I.D.:

410662

CLIENT:

PTI Environmental

QC SAMPLE:

Method Blank

PROJECT #:

C4120308

DATE EXTRACTED: 10/24/94 DATE ANALYZED:

PROJECT NAME:

McCormick & Baxter

DILUTION FACTOR:

10/25/94

SAMPLE MATRIX:

WATER

UNITS:

ug/L

						DUP.	DUP.	
		SAMPLE	SPIKE	SPIKED	%	SPIKED	%	
PARAMETER		RESULT	CONC.	RESULT	REC.	RESULT	REC.	RPD
ACENAPHTHYLENE	<	1.0	10.0	6.1	61	6.7	67	9
PHENANTHRENE	<	0.05	1.0	0.70	70	0.77	77	10.
PYRENE	<	0.1	1.0	0.9	90	1.0	100	11
BENZO(k)FLUORANTHENE	<	0.1	1.0	0.7	70	0.8	80	13
DIBENZO(a,h)ANTHRACENE	<	0.2	1.0	0.8	80	0.9	90	12
SURROGATE:								
BIPHENYL (21% - 149%)				70%		72%		
	C	ONTROL LIM	ITS					
					% REC			RPD
ACENAPHTHYLENE					48-112			50
PHENANTHRENE					63-134			36
PYRENE					80-140			40
BENZO(k)FLUORANTHENE					64-120			36
DIBENZO(a,h)ANTHRACENE					53-191			40

METALS RESULTS

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410662-0

DATE SAMPLED:

DATE RECEIVED:

NA

DATE DIGESTED:

NA

DATE ANALYZED:

10/24/94 10/25/94

DILUTION FACTOR:

1

UNITS:

PARAMETER	RESULTS	METHOD
ARSENIC	< 0.005	7060
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
ZINC	< 0.01	6010

METALS RESULTS

CLIENT I.D.:

BT3-1

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410662-1

DATE SAMPLED:

10/17/94

DATE RECEIVED:

10/18/94

DATE DIGESTED:

10/24/94

DATE ANALYZED:

10/25/94

DILUTION FACTOR:

1

UNITS:

PARAMETER	RESULTS	METHOD
ARSENIC	< 0.005	7060
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
ZINC	0.04	6010

METALS DUPLICATE RESULTS

METHOD: CLIENT:

PROJECT #: PROJECT NAME:

SAMPLE MATRIX:

6010 / 7000 series PTI Environmental

C4120308

McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE: DATE DIGESTED:

DATE ANALYZED: DILUTION FACTOR:

UNITS:

410662

410663-1 10/24/94

10/25/94

1 mg/L

	SAMPLE	DUPLICATE	200	RPD CONTROL
PARAMETER	RESULT	RESULT	RPD	LIMIT
ARSENIC	< 0.005	< 0.005	NA	20
CHROMIUM	< 0.01	< 0.01	NA	20
COPPER	< 0.01	< 0.01	NA	20
ZINC	< 0.01	< 0.01	NA	20

Analyst: 11 10106 94

Reviewer: 11. 107694

METALS SPIKE RESULTS

METHOD:

CLIENT:

PROJECT #:

PROJECT NAME:

6010 / 7000 series PTI Environmental C4120308

McCormick & Baxter

SAMPLE MATRIX: WATER ATI I.D.:

QC SAMPLE:

DATE DIGESTED: DATE ANALYZED:

DILUTION FACTOR:

UNITS:

410662

410663-1 10/24/94

10/25/94

mg/L

1

	SAMPLE	SPIKE	SPIKE	%	CONTROL
PARAMETER	RESULT	CONC	RESULT	RECOV	LIMIT
ARSENIC	< 0.005	0.040	0.050	125	75-125%
CHROMIUM	< 0.01	1.00	0.95	95	75-125%
COPPER	< 0.01	1.00	0.92	92	75-125%
ZINC	< 0.01	1.00	0.88	88	75-125%

INORGANIC RESULTS

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410662-0

DATE SAMPLED:

N/A

DATE RECEIVED:

N/A

DATE ANALYZED:

10/18/94

UNITS:

PARAMETER	EPA METHOD	RESULTS	
CHROMIUM, HEXAVALENT	7196	< 0.01	

INORGANIC RESULTS

CLIENT I.D.:

BT3-1

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

410662-1

DATE SAMPLED:

10/17/94

DATE RECEIVED:

10/18/94

DATE ANALYZED:

10/18/94

UNITS:

PARAMETER	EPA METHOD	RESULTS	
CHROMIUM, HEXAVALENT	7196	< 0.01	

INORGANIC DUPLICATE RESULTS

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

MICCOTTILLE & B

ATI I.D.:

QC SAMPLE:

410662 410662-1

DATE SAMPLED:

10/17/94

DATE RECEIVED:

10/18/94

UNITS:

PARAMETER	EPA METHOD	SAMPLE RESULT	DUP. SAMPLE RESULT	% RPD	CONTROL LIMITS % RPD
CHROMIUM, HEXAVALENT	7196	< 0.01	< 0.01	N/A	20

INORGANIC SPIKE RESULTS

CLIENT:

PTI Environmental

PROJECT #: C4120308

SAMPLE MATRIX: WATER

PROJECT NAME: McCormick & Baxter

ATI I.D.:

410662

QC SAMPLE:

410662-1

DATE SAMPLED: DATE RECEIVED: 10/17/94

UNITS:

10/18/94 mg/L

				SPIKE		CONTROL LIMITS
	EPA	SAMPLE	SPIKE	SAMPLE	%	%
PARAMETER	METHOD	RESULT	CONC.	RESULT	REC	REC
	7400		0.00	0.01	105	75 405
CHROMIUM, HEXAVALENT	7196	< 0.01	0.20	0.21	105	75 - 125

PTI ENVIRONMENTAL SERVICES

CHAIN OF CUSTODY RECORD/ SAMPLE ANALYSIS REQUEST FORM

1221

Page __ of __

	ne and Number)		C	412	-03	08			(A	h		A	(Signa	iture)					Sampling Contact: Steve Barrnett Phone: 503-636-4338
Sample No.	Tag No.	Date	Time			s	ample	Matrix	(1		+	_	Analy	ses R	equeste	ed			Ship Samples to:
4106	62	hbi		Water	Sediment	Tissue	Soil	Air	Other	Concentration (L M H)	Composite or Grab	8310	8040 PM	AS CC. CHIZA	Hex Cr			Extra Container	Archive	Attn:
BT3-1	76795	10-17	1615	X								X								
BT3-1	76796											X						X		
BT3-1	76797												X							
BT3-1	76798												X					X)-1
BT3-1	76799													X						
BT3-1	76800	10-17	1615	X											X					
																		_		RUSH
																				due 10/25/94
	- 2							1												
	,																			
Method of Ship	oment: Ha	ndd	٤١,			Cond	dition on Rece	of Sameipt: _	ples	0/0	14	ood	\		Custo	ody Sea	ıl Inta	ct: Ye	es 🗍	No None Broken by:
Relinquished by	do	h	- A	ha	i~					eived b		1	1	4	/fi	re	1)			10/1894 820 Date/Time 10-17-94 1700
Relinquished by	r:		(Signate	ure)					Rece	eived b	y:					(Signa				Date/Time
Relinquished by	/:		(Signate						Rece	eived b	y Mobi	ile Lab	for Fi	eld An	alysis:	, ,		(Si	ignature;	Date/Time
									Rece	eived fo	or Lab	by:				(Si	gnature	,)		Date/Time

17400 S.W. Upper Boones Ferry Road, Suite 270

Durham, OR. 97224

(503) 684-0447 (503) 620-0393 (FAX)

ATI I.D. 411524 NOV 2 8 1994

PTI

November 14, 1994

Dan Peek PTI Environmental Services 400 Kruse Way, Pl. #2-285 Lake Oswego, OR 97035

Project Name / Number: McCormick & Baxter / C4120308

Attention: Dan Peek

On November 3, 1994, Analytical Technologies, Inc. received one water sample for analysis for the above listed project. The sample was analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (503)684-0447.

Vivian Fuchise

Project Manager

AJK:alm Enclosure Alan J. Kleinschmidt Laboratory Manager

SAMPLE CROSS REFERENCE SHEET

CLIENT:

PROJECT #:

PROJECT NAME:

PTI Environmental

C4120308

McCormick & Baxter

ATI I.D.:

411524

MATRIX:

WATER

ATI #	CLIENT DESCRIPTION	DATE SAMPLED		
411524-1	BT3-2	11/03/94		

-----TOTALS-----

MATRIX WATER # SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT:

PROJECT #:

PROJECT NAME:

PTI Environmental

C4120308

McCormick & Baxter

ATI I.D.:

411524

ANALYSIS	TECHNIQUE	REFERENCE	LAB
PAHs	HPLC/UV/FLUOR	EPA 8310	PLD
Penta & Tetrachlorophenols	GC/ECD	EPA 8040	PLD
Arsenic Chromium Copper Zinc	AA/GF ICAP ICAP	EPA 7060 EPA 6010 EPA 6010 EPA 6010	PLD PLD PLD PLD
Hexavalent Chromium	Colorimetric	EPA 7196	PLD

PLD = ATI - Portland R = ATI - Renton

SD = ATI - San Diego

PHX = ATI - Phoenix PNR = ATI - Pensacola

FC = ATI - Fort Collins

SUB = Subcontract

GAS CHROMATOGRAPHY RESULTS

METHOD:

8040 MOD

CLIENT I.D.:

METHOD BLANK

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: SAMPLE MATRIX: McCormick & Baxter

WATER

ATI I.D.:

411524-0

DATE SAMPLED:

NA NA

DATE RECEIVED:

DATE EXTRACTED:

11/08/94

DATE ANALYZED: DILUTION FACTOR: 11/09/94

UNITS:

ug/L

1

PARAMETER

RESULTS

TETRACHLOROPHENOL (TOTAL)

< 0.20

PENTACHLOROPHENOL

0.05

SURROGATE:

TRIBROMOPHENOL (20% - 100%)

59%

GAS CHROMATOGRAPHY RESULTS

METHOD:

8040 MOD

CLIENT I.D.:

BT3-2

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

411524-1

DATE SAMPLED:

11/03/94

DATE RECEIVED:

11/03/94

DATE EXTRACTED:

11/08/94

DATE ANALYZED:

11/09/94

DILUTION FACTOR:

1

UNITS:

ug/L

PARAMETER

RESULTS

TETRACHLOROPHENOL (TOTAL)
PENTACHLOROPHENOL

0.20

< 0.05

SURROGATE:

TRIBROMOPHENOL (20% - 100%)

65%

Analyst: 10 99

Reviewer: 64 11 10 99

GC - SPIKE RESULTS

METHOD:

EPA 8040 M

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: SAMPLE MATRIX:

TRIBROMOPHENOL

McCormick & Baxter

WATER

ATI I.D.:

QC ID:

DATE EXTRACTED:

DATE ANALYZED:

UNITS:

411524

METHOD BLANK

11/08/94 11/09/94

ug/L

61

20-100

					DUP	DUP	
	SAMPLE	SPIKE	SPIKED	%	SPIKED	%	
PARAMETER	RESULT	ADDED	RESULT	REC	SAMPLE	REC	RPD
	*						
TETRACHLOROPHENOL (TOTAL)	< 0.20	2.00	1.71	86	1.47	74	15
PENTACHLOROPHENOL	< 0.05	0.50	0.62	124	0.58	116	. 7
TETRACHLOROPHENOL (TOTAL)	cc	ONTROL LIMI	тѕ	20-138			35
PENTACHLOROPHENOL				20-138			35
SURROGATE		SPIKE			DUP SPIKE		LIMITS

67

ANALYST: 11107

LIQUID CHROMATOGRAPHY RESULTS

METHOD:

CLIENT:

8310

CLIENT I.D.:

METHOD BLANK
PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

411524-0

DATE SAMPLED:

DATE RECEIVED:

NA NA

DATE EXTRACTED:

11/07/94

DATE ANALYZED:

11/10/94

DILUTION FACTOR:

1

UNITS:

ug/L

PARAMETER	RESULTS
NAPHTHALENE	< 0.5
ACENAPHTHYLENE	< 1.0
ACENAPHTHENE	< 0.5
FLUORENE	< 0.1
PHENANTHRENE	< 0.05
ANTHRACENE	< 0.05
FLUORANTHENE	< 0.1
PYRENE	< 0.1
BENZO(a)ANTHRACENE	< 0.1
CHRYSENE	< 0.1
BENZO(b)FLUORANTHENE	< 0.1
BENZO(k)FLUORANTHENE	< 0.1
BENZO(a)PYRENE	< 0.1
DIBENZO(a,h)ANTHRACENE	< 0.2
BENZO(g,h,i)PERYLENE	< 0.1
INDENO(1,2,3-cd)PYRENE	< 0.1
SURROGATE:	
BIPHENYL (29%-120%)	77%
DII TILITI L (20 /0-120 /0)	, , , ,

Analyst: A III G G

LIQUID CHROMATOGRAPHY RESULTS

0.5 1.0 0.5 0.1 0.05 0.05

0.1

0.2

METHOD: CLIENT I.D.: 8310

BT3-2

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

411524-1

DATE SAMPLED:

11/03/94

DATE RECEIVED:

11/03/94

DATE EXTRACTED: DATE ANALYZED:

11/07/94 11/10/94

DILUTION FACTOR:

1

UNITS:

ug/L

PARAMETER	RESULT
NAPHTHALENE	< 0.

ACENAPHTHYLENE	<	
ACENAPHTHENE	<	
FLUORENE	<	
PHENANTHRENE	<	
ANTHRACENE	<	

FLUORANTHENE	<	0.1
PYRENE	<	0.1
BENZO(a)ANTHRACENE	<	0.1

BENZO(b)FLUORANTHENE	<	0.1
BENZO(k)FLUORANTHENE	<	0.1
BENZO(a)PYRENE	<	0.1

DIBENZO(a,h)ANTHRACENE	<
BENZO(g,h,i)PERYLENE	<

BENZO(g,h,i)PERYLENE	<	0.1
INDENO(1,2,3-cd)PYRENE	<	0.1

SURROGATE:

CHRYSENE

BIPHENYL (29%-120%)

75%

LIQUID CHROMATOGRAPHY BLANK SPIKE RESULTS

METHOD:

8310

ATI I.D.:

411524

CLIENT:

QC SAMPLE:

Method Blank

PTI Environmental

McCormick & Baxter

11/07/94

PROJECT #: PROJECT NAME: C4120308

DATE EXTRACTED: DATE ANALYZED:

11/10/94

SAMPLE MATRIX:

WATER

DILUTION FACTOR: UNITS:

1 ug/L

						DUP.	DUP.	
		SAMPLE	SPIKE	SPIKED	%	SPIKED	%	
PARAMETER		RESULT	CONC.	RESULT	REC.	RESULT	REC.	RPD
OFNIA GUTUNU FNE		1.0	10.0	6.0	68	7.5	75	10
ACENAPHTHYLENE	<	1.0	10.0	6.8	84	0.84	84	10
PHENANTHRENE	<	0.05	1.0	0.84				
PYRENE	< .	0.1	1.0	0.9	90	0.8	80	12
BENZO(k)FLUORANTHENE	< .	0.1	1.0	0.8	80	0.8	80	0
DIBENZO(a,h)ANTHRACENE	<	0.2	1.0	0.8	80	0.9	90	12
SURROGATE:								
BIPHENYL (21% - 149%)				78%		84%		
	C	ONTROL LIM	TS					
					% REC			RPD
ACENAPHTHYLENE					48-112			50
PHENANTHRENE					63-134			36
PYRENE					80-140			40
BENZO(k)FLUORANTHENE					64-120			36
DIBENZO(a,h)ANTHRACENE					53-191			40

METALS RESULTS

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

411524-0

DATE SAMPLED:

DATE RECEIVED:

NA NA

DATE DIGESTED:

11/07/94

DATE ANALYZED:

11/07,08/94

DILUTION FACTOR:

1

UNITS:

PARAMETER	RESULTS	METHOD
ARSENIC	< 0.005	7060
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
ZINC	< 0.01	6010

METALS RESULTS

CLIENT I.D.:

BT3-2

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

DATE SAMPLED:

411524-1 11/03/94

DATE RECEIVED:

11/03/94

DATE DIGESTED:

11/07/94

DATE ANALYZED:

11/07,08/94

DILUTION FACTOR:

1

UNITS:

PARAMETER	RESULTS	METHOD
ARSENIC	< 0.005	7060
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
ZINC	0.34	6010

METALS DUPLICATE RESULTS

METHOD:

CLIENT: PROJECT #:

PROJECT NAME:

C4120308

McCormick & Baxter

SAMPLE MATRIX: WATER

6010 / 7000 series PTI Environmental

ATI I.D.: QC SAMPLE: DATE DIGESTED:

DATE ANALYZED:

DILUTION FACTOR: UNITS:

411524

411524-1 11/07/94

11/07,08/94

PARAMETER	SAMPLE RESULT	DUPLICATE RESULT	RPD	RPD CONTROL LIMIT
ARSENIC	< 0.005	< 0.005	NA	20
CHROMIUM	< 0.01	< 0.01	NA	20
COPPER	< 0.01	< 0.01	NA	20
ZINC	0.34	0.33	3	20

METALS SPIKE RESULTS

METHOD: CLIENT:

6010 / 7000 series

PROJECT #:

PTI Environmental

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

C4120308

WATER

ATI I.D.:

QC SAMPLE:

411524 411524-1

DATE DIGESTED:

11/07/94

DATE ANALYZED:

11/07,08/94

DILUTION FACTOR:

UNITS:

	SAMPLE	SPIKE	SPIKE	%	CONTROL
PARAMETER	RESULT	CONC	RESULT	RECOV	LIMIT
ARSENIC	< 0.005	0.040	0.037	93	75-125%
CHROMIUM	< 0.01	1.00	0.95	95	75-125%
COPPER	< 0.01	1.00	0.93	93	75-125%
ZINC	0.34	1.00	1.42	108	75-125%

INORGANIC RESULTS

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #: C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

411524-0

DATE SAMPLED: DATE RECEIVED: N/A N/A

DATE ANALYZED:

11/03/94

UNITS:

PARAMETER	EPA METHOD	RESULTS	
CHROMIUM, HEXAVALENT	7196	< 0.01	

INORGANIC RESULTS

CLIENT I.D.:

BT3-2

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

411524-1

DATE SAMPLED:

11/03/94

DATE RECEIVED:

11/03/94

DATE ANALYZED:

11/03/94

UNITS:

PARAMETER	EPA METHOD	RESULTS	
CHROMIUM, HEXAVALENT	7196	< 0.01	

INORGANIC DUPLICATE RESULTS

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

QC SAMPLE:

411524 411524-1

DATE SAMPLED:

11/03/94

DATE RECEIVED:

11/03/94

UNITS:

			DUP.		CONTROL
	EPA	SAMPLE	SAMPLE	%	LIMITS
PARAMETER	METHOD	RESULT	RESULT	RPD	% RPD
CHROMIUM, HEXAVALENT	7196	< 0.01	< 0.01	N/A	20

INORGANIC SPIKE RESULTS

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

411524

QC SAMPLE:

411524-1

DATE SAMPLED:

11/03/94

DATE RECEIVED:

11/03/94

UNITS:

				SPIKE		CONTROL LIMITS
	EPA	SAMPLE	SPIKE	SAMPLE	%	%
PARAMETER	METHOD	RESULT	CONC.	RESULT	REC	REC
CHROMIUM, HEXAVALENT	7196	< 0.01	0.20	0.21	105	75 - 125

PTI ENVIRONMENTAL SERVICES

CHAIN OF CUSTODY RECORD/ SAMPLE ANALYSIS REQUEST FORM

1226

Page __ of __

Project: (Nam	ne and Number)	ider	04	120	730	8					ah	San	-	Signa				_	_	Sampling Contact: Steve Barnett Phone: 503 W36-4338
Sample No.	Tag No.	Date	Time			Sa	ample	Matrix		1	t ·			Analy		eques	ted			Ship Samples to:
		hb,		Water	Sediment	Tissue	Soil	Air	Other	Concentration (L M H)	Composite or Grab	8310	8040 (M	Metals As, Cr, Cn, Zn	Hex Cr	(24 he).		Extra Container	Archive	Attn:
BT3-2 BT3-2 BT3-2 BT3-2	76601 76602 76604 76604 76606	11-3 11-3 11-3	1200 1200 1200 1200	X X X								X	XX	X	X			X		411504
Method of Ship	oment: \\	und					dition on Reco	of Sameipt: _	nples						Cust	ody Se	eal Inta	ct: Y	es 🗍	No None Broken by:
Relinquished by Relinquished by	r:	løf	(Signal		d				Reco	eived b	oy:	oile Lat		eld An		(Sig	nature) nature)		ignature	Date/Time
									Rec	eived f	or Lab	by:				(Signatur	e)		Date/Time

Distribution: Original and One Copy - Accompany Shipment; One Copy - Project File

17400 S.W. Upper Boones Ferry Road, Suite 270

Durham, OR. 97224

(503) 684-0447 (503) 620-0393 (FAX)

RECEIVED

ATI I.D. 411577

DEC - 1 1994

PTI

November 22, 1994

Dan Peek PTI Environmental Services 400 Kruse Way, Pl. #2-285 Lake Oswego, OR 97035

Project Name / Number: McCormick & Baxter / C4120308

Attention: Dan Peek

On November 11, 1994, Analytical Technologies, Inc. received six water samples for analysis for the above listed project. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (503)684-0447.

Vivian Fuchise

Project Manager

AJK:alm Enclosure Alan J. Kleinschmidt

Laboratory Manager

SAMPLE CROSS REFERENCE SHEET

CLIENT:

PROJECT NAME:

PTI Environmental

ATI I.D.:

411577

PROJECT #:

C4120308

McCormick & Baxter

MATRIX:

WATER

ATI #	CLIENT DESCRIPTION	DATE SAMPLED
444577.4	T4 555	
411577-1	T1 EFF	11/11/94
411577-2	T2 EFF	11/11/94
411577-3	GAC EFF	11/11/94
411577-4	BT3A-2A	11/11/94
411577-5	BT5 EFF	11/11/94
411577-6	DIS FILT	11/11/94

-----TOTALS-----

MATRIX WATER

SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT:

PTI Environmental

ATI I.D.: 411577

PROJECT #:

PROJECT NAME:

C4120308

McCormick & Baxter

ANALYSIS	TECHNIQUE	REFERENCE LAB
Zinc	ICAP	EPA 6010 PLD

PLD = ATI - Portland

R = ATI - Renton SD = ATI - San Diego

PHX = ATI - Phoenix

PNR = ATI - Pensacola FC = ATI - Fort Collins

SUB = Subcontract

METHOD:

6010 - Zinc

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

DATE SAMPLED:

411577 11/11/94

DATE RECEIVED:

11/11/94

DATE DIGESTED:

11/15/94

DATE ANALYZED:

11/15/94

UNITS:

ATI I.D.	CLIENT I.D.	RESULT
111577-0	Method Blank	< 0.01
411577-1	T1 EFF	23.3
411577-2	T2 EFF	24.8
111577-3	GAC EFF	0.88
411577-4	BT3A-2A	0.15
411577-5	BT5 EFF	< 0.01
111577-6	DIS FILT	0.13

METALS DUPLICATE RESULTS

METHOD:

CLIENT:

PROJECT #:

PROJECT NAME:

SAMPLE MATRIX:

6010

PTI Environmental

C4120308

McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE:

DATE DIGESTED: DATE ANALYZED:

DILUTION FACTOR: UNITS:

411577

411577-3

11/15/94

11/15/94

1

mg/L

PARAMETER	SAMPLE RESULT	DUPLICATE RESULT	RPD	RPD CONTROL LIMIT
ZINC	0.88	0.85	3	20

Analyst: 117 117 194
Reviewer: 111-11/18/94

METALS SPIKE RESULTS

METHOD:

CLIENT:

PROJECT NAME:

PROJECT #:

SAMPLE MATRIX:

6010

PTI Environmental

C4120308

McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE:

DATE DIGESTED:

DATE ANALYZED:

DILUTION FACTOR:

UNITS:

411577

411577-3

11/15/94

11/15/94

1

PARAMETER	SAMPLE RESULT	SPIKE	SPIKE RESULT	% RECOV	CONTROL
ZINC	0.88	1.00	1.81	93	75-125%

ATI 1.D. 411577

CHAIN OF CUSTODY RECORD/ SAMPLE ANALYSIS REQUEST FORM

1227

Page __ of __

Project: (Nam	ne and Number	Prud	u:	C4	(IZC	5.50	e		>	5		San	nplers:	(Signa	iture)					Sampling Contact: AN TELE Phone: 636 4386
Sample No.	Tag No.		Time			S	ample	Majris		1	1	G. Gra		Analy	ses R	leques	ted			Ship Samples to:
				Water	Sediment	Tissue	Soil	Air	Other	Concentration (L M H)	Composite or Grab	IN IN						Extra Container	Archive	Alln:
T1 EFF	-1	11/11	0845	X								X								TOTAL ZN
TZ EFF	- 2	1/11	1	X								X								./
GAC EFE	= -3	17/1		X								X								
BT3A -	A - 4	1/11		X								X								
BT5 EF	THE RESIDENCE OF THE PARTY OF T	11/11		X		-						X							7. 8	
DISFILE	-6	1/11	V	X			-	-	-	-		X								PLEASE FILTER
														1/3				2		
												T	Œ	A	E		R	ىد	+	24 hr
Method of Ship	pment: DE	2108	PET					of San eipt: _	•						Cust	ody Se	eal Inta	act: Y	es 🔲	No None Broken by:
Relinquished by		<u>'</u>	(Signå	(Ora)	V	t	_			eived t		ten	-	1	E	Low (Sig	nature	Rey		Date/Time 11/11/94 8940
Relinquished by	y:	-	(Signa	ture)					Rec	eived l	ру:					(Sig	nature)	У		Date/Time
Relinquished by	y:		(Signa	ture)		y set			Rec	eived I	y Mot	ile Lat	o for Fi	eld An	alysis	:		(5	ignature	Date/Time
									Red	eived (or Lab	by:				((Signatu	re)		Date/Time

17400 S.W. Upper Boones Ferry Road, Suite 270 Durham, OR, 97224 (503) 684-0447 (503) 620-0393 (FAX)

ATI I.D. 411652

November 30, 1994

Dan Peek PTI Environmental Services 400 Kruse Way, Pl. #2-285 Lake Oswego, OR 97035

Project Name / Number: McCormick & Baxter / C4120308

Attention: Dan Peek

On November 21, 1994, Analytical Technologies, Inc. received seven water samples for analysis for the above listed project. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (503)684-0447.

Vivian Fuchise

Project Manager

AJK:alm Enclosure Alan J. Kleinschmidt Laboratory Manager

Jal Vice to

SAMPLE CROSS REFERENCE SHEET

CLIENT:

PTI Environmental

ATI I.D.:

411652

PROJECT #:

C4120308

.

The same of the sa

PROJECT NAME:

McCormick & Baxter

MATRIX:

WATER

ATI #	CLIENT DESCRIPTION	DATE SAMPLED
411652-1	TK1 EFF	11/21/94
411652-2	TK2 EFF	11/21/94
411652-3	WELL 4	11/21/94
411652-4	WELL 7	11/21/94
411652-5	WELL 1	11/21/94
411652-6	W741C	11/21/94
411652-7	TK1 INF	11/21/94

-----TOTALS-----

MATRIX WATER # SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT:

PTI Environmental

ATI I.D.: 411652

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

ANALYSIS	TECHNIQUE	REFERENCE	LAB
Iron	ICAP	EPA 6010	PLD
Arsenic	AA/GF	EPA 7060	PLD
			FLD
Chromium	ICAP	EPA 6010	PLD
Copper	ICAP	EPA 6010	PLD
Zinc	ICAP	EPA 6010	PLD

PLD = ATI - Portland

= ATI - Renton R

SD = ATI - San Diego

PHX = ATI - Phoenix

PNR = ATI - Pensacola FC = ATI - Fort Collins

SUB = Subcontract

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

411652-0

DATE SAMPLED:

DATE RECEIVED:

NA NA

DATE DIGESTED:

11/21/94

DATE ANALYZED:

11/21,22/94

DILUTION FACTOR:

1

UNITS:

PARAMETER	RESULTS	METHOD
ARSENIC	< 0.005	7060
CADMIUM	< 0.005	6010
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
IRON	< 0.02	6010
ZINC	< 0.01	6010

CLIENT I.D.:

TK1 EFF

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

411652-1

DATE SAMPLED:

11/21/94

DATE RECEIVED:

11/21/94

DATE DIGESTED:

DATE ANALYZED:

11/21/94 11/21,22/94

DILUTION FACTOR:

UNITS:

PARAMETER	RESULTS	METHOD
ARSENIC	0.015	7060
CADMIUM	< 0.005	6010
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
IRON	58.9	6010
ZINC	86.2	6010

CLIENT I.D.:

TK2 EFF

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

ATT I.D.:

411652-2

DATE SAMPLED:

11/21/94

DATE RECEIVED:

11/21/94

DATE DIGESTED:

11/21/94

DATE ANALYZED:

11/21,22/94

DILUTION FACTOR:

1

UNITS:

mg/L

PARAMETER	RESULTS	METHOD
ARSENIC	0.005	7060
CADMIUM	< 0.005	6010
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
IRON	17.1	6010
ZINC	21.5	6010

Analyst: \$\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \

CLIENT I.D.:

WELL 4

CLIENT:

ZINC

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

411652-3

DATE SAMPLED:

11/21/94

DATE RECEIVED:

11/21/94

DATE DIGESTED:

11/21/94

DATE ANALYZED:

11/21,22/94

DILUTION FACTOR:

1

UNITS:

mg/L

METHOD RESULTS PARAMETER 6010

0.08

CLIENT I.D.:

WELL 7

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

411652-4 11/21/94

DATE SAMPLED: DATE RECEIVED:

11/21/94

DATE DIGESTED:

11/21/94

DATE ANALYZED:

11/21,22/94

DILUTION FACTOR:

1

UNITS:

PARAMETER	RESULTS	METHOD
ZINC	0.08	6010

CLIENT I.D.:

WELL 1

CLIENT:

ZINC

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

411652-5

DATE SAMPLED:

11/21/94

DATE RECEIVED: DATE DIGESTED: 11/21/94

DATE ANALYZED:

11/21/94

DILUTION FACTOR:

11/21,22/94

6010

UNITS:

mg/L

PARAMETER	RESULTS	METHOD

0.03

Analysts 11/73/94

Reviewer: 55 11/23/94

CLIENT I.D.:

W741C

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

411652-6 11/21/94

DATE SAMPLED:

DATE RECEIVED:

11/21/94

DATE DIGESTED:

11/21/94

DATE ANALYZED:

11/21,22/94

DILUTION FACTOR:

1

UNITS:

mg/L

PARAMETER	RESULTS	METHOD
ARSENIC	0.054	7060
CADMIUM	< 0.005	6010
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
IRON	48.2	6010
ZINC	0.04	6010

Analyst: 11/23/94

Reviewer: 555 11/23/94

METALS DUPLICATE RESULTS

METHOD:

CLIENT:

PROJECT #:

PROJECT NAME:

SAMPLE MATRIX:

6010 / 7000 series

PTI Environmental

C4120308

McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE:

DATE DIGESTED:

DATE ANALYZED:

DILUTION FACTOR: UNITS:

411652

411647-1

11/21/94 11/21,22/94

11/21

mg/L

PARAMETER	SAMPLE RESULT	DUPLICATE RESULT	RPD	RPD CONTROL LIMIT	
ARSENIC	0.012	0.012	0	20	
CADMIUM	< 0.005	< 0.005	NA	20	
CHROMIUM	< 0.01	< 0.01	NA	20	
COPPER	< 0.01	< 0.01	NA	20	
RON	43.0	43.0	0	20	
ZINC	0.13	0.14	7	20	

Analyst: 4/2- 11/73/94

Reviewer: \$5 11/23/94

METALS SPIKE RESULTS

METHOD:

CLIENT: PROJECT #: 6010 / 7000 series PTI Environmental

C4120308

WATER

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

QC SAMPLE: DATE DIGESTED:

DATE ANALYZED: **DILUTION FACTOR:**

UNITS:

ATI I.D.:

411652

411647-1 11/21/94

11/21,22/94

	SAMPLE	SPIKE	SPIKE	%	CONTROL
PARAMETER	RESULT	CONC	RESULT	RECOV	LIMIT
ARSENIC	0.012	0.040	0.054	105	75-125%
CADMIUM	< 0.005	1.00	0.924	92	75-125%
CHROMIUM	< 0.01	1.00	0.96	96	75-125%
COPPER	< 0.01	1.00	0.95	95	75-125%
RON	43.0	2.00	45.3	115 *	75-125%
ZINC	0.13	1.00	0.94	81	75-125%

^{*} Spike control limit not applicable. The sample level is greater than four times the spike level.

PTI ENVIRONMENTAL SERVICES

CHAIN OF CUSTODY RECORD/ SAMPLE ANALYSIS REQUEST FORM

1228

Page __ of __

	Project: (Nan	Tag No.	e Ba	xter (1414	203	Ba				(A	Barr	plers:	(Signa	iture)					Sampling Contact: Steve Barnet Phone: 503 - 636 - 43383
	Sample No.	Tag No.	Date	Time			S	ample	Matrix	(Analy	ses R	eques	ted			Ship Samples to:
	4116	52	hb,		Water	Sediment	Tissue	Soil	Air	Other	Concentration (L M H)	Composite or Grab	Metals Fe, Zn, As, C, Cn	Zinc					Extra Container	Archive	Attn:
-1	TKIEFF	76607	11-21	945	X								X								
-2	TKZEFF		11-21	945	×					2			X								M N
-3	WELL4	76609	11-21	1005	X									X							la prince
	WELL 7	76610	11-21	1005	X									X							77/10
- [76611		1030							-		14	X							
	W741C	76612					-	ļ			-		X						_		
- 1	TK1 INF	76613	11-21	1040	X					_	-		Λ					-			
							- х				_									, to	
	T																				
	Method of Ship	oment:		1				dition on Rece							_	Custo	ody Se	al Inta	act: Ye	es 🔲	No None Broken by:
	Relinquished by	:	JA1	(Signati	Si	in				Rece	eived b	y:	_	1	1/0	1	(Sign	nature)			Date/Time 11/2/194 1235
	Relinquished by			(Signati	ле)					Rece	eived b	y:					(Sign	nature)			Date/Time
	Relinquished by	:		(Signate	ire)					Rece	eived b	y Mob	ile Lab	for Fie	ld An	alysis:			(S	ignature	Date/Time
										Rece	eived fo	or Lab	by:				(5	Signatur			Date/Time

DEC I & 1994

ATI I.D. 411690

December 5, 1994

Steve Barnett
PTI Environmental Services
400 Kruse Way, Pl. #2-285
Lake Oswego, OR 97035

Project Name / Number: McCormick & Baxter / C4120308

Attention: Steve Barnett

On November 28, 1994, Analytical Technologies, Inc. received two water samples for analysis for the above listed project. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (503)684-0447.

Vivian Fuchise

Project Manager

AJK:alm Enclosure Alan J. Kleinschmidt Laboratory Manager

チールカーを

SAMPLE CROSS REFERENCE SHEET

CLIENT:

PROJECT #:

PROJECT NAME:

PTI Environmental

C4120308

McCormick & Baxter

ATI I.D.:

411690

MATRIX:

WATER

ATI #	CLIENT DESCRIPTION	DATE SAMPLED
411690-1	SED3	11/23/94
411690-2	TK3a	11/23/94

-----TOTALS-----

MATRIX WATER # SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT:

PTI Environmental

ATI I.D.: 411690

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

ANALYSIS	TECHNIQUE	REFERENCE	LAB
	1045	EDA 6010	DI D
Antimony	ICAP	EPA 6010	PLD
Arsenic	AA/GF	EPA 7060	PLD
Beryllium	ICAP	EPA 6010	PLD
Cadmium	ICAP	EPA 6010	PLD
Chromium	ICAP	EPA 6010	PLD
Copper	ICAP	EPA 6010	PLD
Iron	ICAP	EPA 6010	PLD
Lead	AA/GF	EPA 7421	PLD
Manganese	ICAP	EPA 6010	PLD
Mercury	AA / Cold Vapor	EPA 7470	PLD
Nickel	ICAP	EPA 6010	PLD
Selenium	AA/GF	EPA 7740	PLD
Silver	ICAP	EPA 6010	PLD
Thallium	AA/GF	EPA 7841	PLD
Zinc	ICAP	EPA 6010	PLD
Sodium	ICAP	EPA 6010	PLD
334.4			
Chloride	Titrimetric	EPA 325.3	PLD

PLD = ATI - Portland = ATI - Renton

= ATI - San Diego SD

PHX = ATI - Phoenix PNR = ATI - Pensacola

= ATI - Fort Collins FC

SUB = Subcontract

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

411690-0

DATE SAMPLED:

DATE RECEIVED:

NA

DATE DIGESTED:

NA

DATE ANALYZED:

11/28/94 11/29,30/94

DILUTION FACTOR:

1

UNITS:

PARAMETER	RESULTS	METHOD
ANTIMONY	< 0.05	6010
ARSENIC	< 0.005	7060
BERYLLIUM	< 0.005	6010
CADMIUM	< 0.005	6010
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
IRON	< 0.02	6010
LEAD	< 0.002	7421
MANGANESE	< 0.01	6010
MERCURY	< 0.0005	7470
NICKEL	< 0.02	6010
SELENIUM	< 0.005	7740
SILVER	< 0.01	6010
SODIUM	< 0.1	6010
THALLIUM	< 0.005	7841
ZINC	< 0.01	6010

CLIENT I.D.:

SED3

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

A11 1.D..

411690-1

DATE SAMPLED:

11/23/94

DATE RECEIVED:

11/28/94

DATE DIGESTED:

11/28/94

DATE ANALYZED: DILUTION FACTOR: 11/29,30/94

UNITS:

mg/L

1

PARAMETER	RESULTS	METHOD
ANTIMONY	< 0.05	6010
ARSENIC	0.079	7060
BERYLLIUM	< 0.005	6010
CADMIUM	< 0.005	6010
CHROMIUM	0.04	6010
COPPER	0.07	6010
IRON	124	6010
LEAD	0.019	7421
MANGANESE	3.98	6010
MERCURY	< 0.0005	7470
NICKEL	< 0.02	6010
SELENIUM	< 0.005	7740
SILVER	< 0.01	6010
SODIUM	18.8	6010
THALLIUM	< 0.005	7841
ZINC	0.26	6010

Analyst: SM . 11 32 94

CLIENT I.D.:

TK3a

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

411690-2 11/23/94

DATE SAMPLED:

DATE RECEIVED: DATE DIGESTED: 11/28/94

DATE ANALYZED:

11/28/94

11/29,30/94

DILUTION FACTOR:

1

UNITS:

PARAMETER	RESULTS	METHOD
ANTIMONY	< 0.05	6010
ARSENIC	< 0.005	7060
BERYLLIUM	< 0.005	6010
CADMIUM	< 0.005	6010
CHROMIUM	< 0.01	6010
COPPER	< 0.01	6010
IRON	1.18	6010
LEAD	< 0.002	7421
MANGANESE	4.30	6010
MERCURY	< 0.0005	7470
NICKEL	0.05	6010
SELENIUM	< 0.005	7740
SILVER	< 0.01	6010
SODIUM	297	6010
THALLIUM	< 0.005	7841
ZINC	0.15	6010

METALS DUPLICATE RESULTS

METHOD:

CLIENT:

PROJECT #: C4120308

PROJECT NAME:

SAMPLE MATRIX:

6010 / 7000 series PTI Environmental

McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE:

DATE DIGESTED:

DATE ANALYZED: **DILUTION FACTOR:**

UNITS:

411690

411690-1 11/28/94

11/29,30/94

	SAMPLE	DUPLICATE		RPD CONTROL
PARAMETER	RESULT	RESULT	RPD	LIMIT
ANTIMONY	< 0.05	< 0.05	NA	20
ARSENIC	0.079	0.077	3	20
BERYLLIUM	< 0.005	< 0.005	NA	20
CADMIUM	< 0.005	< 0.005	NA	20
CHROMIUM .	0.04	0.04	0	20
COPPER	0.07	0.07	0	20
IRON	124	126	2	20
LEAD	0.019	0.021	10	20
MANGANESE	3.98	4.04	1	20
MERCURY	< 0.0005	< 0.0005	NA *	20
NICKEL	< 0.02	< 0.02	NA	20
SELENIUM	< 0.005	< 0.005	NA	20
SILVER	< 0.01	< 0.01	NA	20
SODIUM	18.8	19.1	2	20
THALLIUM	< 0.005	< 0.005	NA	20
ZINC	0.26	0.25	4	20

^{*} Quality control for mercury performed on sample 411690-2.

METALS SPIKE RESULTS

METHOD: CLIENT:

6010 / 7000 series PTI Environmental

C4120308 PROJECT #:

McCormick & Baxter PROJECT NAME:

SAMPLE MATRIX: WATER ATI I.D.: QC SAMPLE: DATE DIGESTED:

411690-1 11/28/94 DATE ANALYZED: 11/29,30/94

411690

DILUTION FACTOR: 1 UNITS: mg/L

	SAMPLE	SPIKE	SPIKE	%	CONTROL
PARAMETER	RESULT	CONC	RESULT	RECOV	LIMIT
ANTIMONY	< 0.05	1.00	0.96	96	75-125%
ARSENIC	0.079	0.040	0.120	103	75-125%
BERYLLIUM	< 0.005	1.00	0.970	97	75-125%
CADMIUM	< 0.005	1.00	0.978	98	75-125%
CHROMIUM	0.04	1.00	1.04	100	75-125%
COPPER	0.07	1.00	1.03	96	75-125%
IRON	124	2.00	127	150 **	75-125%
LEAD	0.019	0.020	0.036	85	75-125%
MANGANESE	3.98	1.00	4.99	101	75-125%
MERCURY	< 0.0005	0.0020	0.0020	100 *	75-125%
NICKEL	< 0.02	1.00	1.09	109	75-125%
SELENIUM	< 0.005	0.020	0.016	80	75-125%
SILVER	< 0.01	1.00	0.99	99	75-125%
THALLIUM	< 0.005	0.040	0.038	95	75-125%
ZINC	0.26	1.00	1.10	84	75-125%

^{**} Spike control limit not applicable. The sample level is greater than four times the spike level.

^{*} Quality control for mercury performed on sample 411690-2.

METALS BLANK SPIKE RESULTS

METHOD: CLIENT: 6010 / 7000 series PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

QC SAMPLE:

DATE DIGESTED:

DATE ANALYZED:

UNITS:

411690

Method Blank

11/28/94

11/29,30/94

DILUTION FACTOR: 1

mg/L

	SPIKE	SPIKE	%	CONTROL	
PARAMETER	RESULT	CONC	RECOV	LIMIT	
ANTIMONY	0.93	1.00	93	80-120%	
ARSENIC	0.042	0.040	105	80-120%	
BERYLLIUM	0.889	1.00	89	80-120%	
CADMIUM	0.940	1.00	94	80-120%	
CHROMIUM	0.93	1.00	93	80-120%	
COPPER	0.86	1.00	86	80-120%	
IRON	1.77	2.00	89	80-120%	
LEAD	0.020	0.020	100	80-120%	
MANGANESE	0.90	1.00	90	80-120%	
MERCURY	0.0020	0.0020	100	80-120%	
NICKEL	1.02	1.00	102	80-120%	
SELENIUM	0.019	0.020	95	80-120%	
SILVER	0.92	1.00	92	80-120%	
THALLIUM	0.042	0.040	105	80-120%	
ZINC	0.91	1.00	91	80-120%	

Analyst: 11.1215194

Reviewer: 11.12594

GENERAL CHEMISTRY RESULTS

METHOD:

EPA 325.3 (Chloride)

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

411690

DATE SAMPLED:

11/23/94

DATE RECEIVED: DATE ANALYZED: 11/28/94 11/28/94

UNITS:

ATI I.D.	CLIENT I.D.	RESULTS
		HEGGETG
411690-0	Method Blank	< 0.5
411690-1	SED 3	105
411690-2	ТК ЗА	89

INORGANIC DUPLICATE RESULTS

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

411690

QC SAMPLE:

411619-1

DATE SAMPLED: DATE RECEIVED: N/A N/A

UNITS:

PARAMETER	EPA METHOD	SAMPLE RESULT	DUP. SAMPLE RESULT	% RPD	CONTROL LIMITS % RPD
CHLORIDE	325.3	3.2	3.5	9	20

INORGANIC SPIKE RESULTS

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: McCormick & Baxter

SAMPLE MATRIX: WATER

ATI I.D.:

411690

QC SAMPLE:

411619-1

DATE SAMPLED: DATE RECEIVED:

N/A N/A

UNITS:

			2	SPIKE		CONTROL LIMITS
	EPA	SAMPLE	SPIKE	SAMPLE	%	%
PARAMETER	METHOD	RESULT	CONC.	RESULT	REC	REC
CHLORIDE	325.3	3.2	20.0	23.2	100	75 - 125

PTI ENVIRONMENTAL SERVICES

CHAIN OF CUSTODY RECORD/ SAMPLE ANALYSIS REQUEST FORM

1229

Page __ of __

Project: (Name of Control of Cont	ne and Number	Bak	ter (041	203	308					A	Bar		: (Signa						Sampling Contact: Steve Barnet Phone: 503 - 636 - 4338
Sample No.	Tag No.	Date	Time			S	ample									Ship Samples to:				
411	690	~		Water	Sediment	Tissue	Soil	Air	Other	Concentration (L M H)	Composite or Grab	ははいい	iriority Phillips Wetalls	Fe Ma. Na. Ci				Extra Container	Archive	Attn:
SED3	76651	11-23	1110	X								X	X	X				3,		12hc
TK3a	76652	11-23	1400	X									X	X						-2 40111
						Con	dillon	of Sam												
Method of Ship	ment:	HAN	10			Upo	n Rece	eipt: _	g	Od)				Custo	ody Se	al Inta	act: Ye	es 🔲	No None Broken by:
Relinquished by	:(Jeh	Signal	UL-			\		Rece	eived b	y:	4	4	1	1	(Sign	nature)	1		Date/Time 11/28/97 303
Relinquished by	:/		(Signat	lure)			Received by:								(Signature)				•	Date/Time
Relinquished by	:		(Signat	lure)	-		Received by Mobile Lab for Field Analysis:							eld An	alysis:			(S	ignature	Date/Time
									Rece	eived fo	or Lab	by:				(5	Signatur	re)		Date/Time

(503) 684-0447 (503) 620-0393 (FAX)

ATI I.D. 412539

December 8, 1994

Steve Barnett
PTI Environmental Services
400 Kruse Way, Pl. #2-285
Lake Oswego, OR 97035

Project Name / Number: McCormick & Baxter / C4120308

Attention: Steve Barnett

On Dec 6, 1994, Analytical Technologies, Inc. received one water sample for analysis for the above listed project. The sample was analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (503)684-0447.

Vivian Fuchise Project Manager

AJK:alm Enclosure Alan J. Kleinschmidt Laboratory Manager

From Fo

SAMPLE CROSS REFERENCE SHEET

CLIENT:

PTI Environmental

ATI I.D.:

412539

PROJECT #:

PROJECT NAME:

#: C

C4120308

McCormick & Baxter

MATRIX:

WATER

ATI #	CLIENT DESCRIPTION	DATE SAMPLED				

412539-1

GAC EFF

12/05/94

-----TOTALS-----

MATRIX WATER # SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT:

PROJECT #:

PROJECT NAME:

PTI Environmental

C4120308

McCormick & Baxter

ATI I.D.:

412539

ANALYSIS	TECHNIQUE	REFERENCE LAB	
Zinc	ICAP	EPA 6010 PLD	

PLD = ATI - Portland

R = ATI - Renton

SD = ATI - San Diego

PHX = ATI - Phoenix PNR = ATI - Pensacola

FC = ATI - Fort Collins

SUB = Subcontract

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental Services

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

DATE SAMPLED: DATE RECEIVED: NA

DATE DIGESTED:

NA

12/06/94

412539-0

DATE ANALYZED: **DILUTION FACTOR:** 12/06/94

UNITS:

PARAMETER	RESULTS	METHOD		
ZINC	< 0.01	6010		

CLIENT I.D.:

GAC EFF

CLIENT:

PTI Environmental Services

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

DATE SAMPLED:

412539-1 12/06/94

DATE RECEIVED:

DATE DIGESTED:

12/06/94

DATE ANALYZED:

12/06/94 12/06/94

DILUTION FACTOR:

1

UNITS:

mg/L

PARAMETER RESULTS **METHOD**

ZINC

0.17

6010

METALS DUPLICATE RESULTS

METHOD:

6010

CLIENT:

PTI Environmental Services

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

8

WATER

ATI I.D.:

QC SAMPLE:

412539 412539-1

IC SAMPLE:

DATE DIGESTED:

12/06/94

DATE ANALYZED:

12/06/94

DILUTION FACTOR:

UNITS:

1 mg/L

PARAMETER	SAMPLE RESULT	DUPLICATE RESULT	RPD	RPD CONTROL LIMIT
ZINC	0.17	0.17	0	20

Analyst: Lit (17)94

Reviewer: Lit 17/7/94

METALS SPIKE RESULTS

METHOD:

CLIENT:

PROJECT #: PROJECT NAME: SAMPLE MATRIX: 6010

PTI Environmental Services

C4120308

McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE:

DATE DIGESTED:

DATE ANALYZED:

DILUTION FACTOR:

UNITS:

412539

412539-1

12/06/94 12/06/94

1

PARAMETER	SAMPLE RESULT	SPIKE	SPIKE RESULT	% RECOV	CONTROL	
ZINC	0.17	1.00	1.03	86	75-125%	

PTI ENVIRONMENTAL SERVICES

CHAIN OF CUSTODY RECORD/ SAMPLE ANALYSIS REQUEST FORM

1976 Page_of_

Project: (Name and Number) // (Coving La Brix ev	, 64120308	Samplers: (Signa	ture)	Sampling Contact: Sleve 77. 42.1 Phone: 503-636-4338
Sample No. Tag No. Date Time	Sample Matri	x Analy	ses Requested	Ship Samples to:
412539	Sediment Tissue Soil	Concentration (L M H) Composite or Grab	Extra Container Archive	Altn:
60NC EFF 76653 12-5 1600	X			PUSH 24hr
Method of Shipment:	Condition of Sar Upon Receipt:		Custody Seal Intact: Yes	No None Broken by:
Relinquished by: Relinquished by: (Signate (Si	Ure)	Received by: Received by: Received by Mobile Lab for Field And Received for Lab by:	(Signature) (Signature) (Signature) (Signature)	Date/Time Date/Time Date/Time Date/Time

17400 S.W. Upper Boones Ferry Road, Suite 270 AN Darn 1995R. 97224 (503) 684-0447 (503) 620-0393 (FAX)

DECEMEN

JAN 03 1995

ATI I.D. 412576

December 29, 1994

Steve Barnett PTI Environmental Services 400 Kruse Way, Pl. #2-285 Lake Oswego, OR 97035

Project Name / Number: McCormick & Baxter / C4120308

Attention: Steve Barnett

On December 12, 1994, Analytical Technologies, Inc. received one water sample for analysis for the above listed project. The sample was analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (503)684-0447.

Vivian Fuchise

Project Manager

AJK:alm Enclosure

3 ~ No :- for Alan J. Kleinschmidt Laboratory Manager

SAMPLE CROSS REFERENCE SHEET

CLIENT:

PTI Environmental

ATI I.D.:

412576

PROJECT #:

PROJECT NAME:

C4120308

McCormick & Baxter

MATRIX:

WATER

ATI	#	CLIENT DESCRIPTION	DATE SAMPLED

412576-1

ВТЗА

12/12/94

-----TOTALS-----

MATRIX WATER

SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT:

PROJECT #:

PROJECT NAME:

PTI Environmental

C4120308

McCormick & Baxter

ATI I.D.: 412576

ANALYSIS	TECHNIQUE	REFERENCE	LAB
Zinc	ICAP	EPA 6010	PLD

PLD = ATI - Portland

= ATI - Renton

SD = ATI - San Diego

ATI - Phoenix PHX = PNR = ATI - Pensacola

FC = ATI - Fort Collins

SUB = Subcontract

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

DATE SAMPLED:

NA

DATE RECEIVED:

NA

DATE DIGESTED:

DATE ANALYZED:

12/13/94 12/19/94

412576-0

DILUTION FACTOR:

UNITS:

PARAMETER	RESULTS	METHOD
ZINC	< 0.01	6010

CLIENT I.D.:

ВТЗА

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

DATE SAMPLED:

412576-1

DATE SAIVIPLED.

12/12/94

DATE RECEIVED: DATE DIGESTED: 12/12/94

DATE ANALYZED:

12/13/94 12/19/94

DILUTION FACTOR:

1

UNITS:

mg/L

PARAMETER RESULTS METHOD

ZINC

0.13

6010

Analyst: 12/23/94

Reviewer: 14. 12/28/94

METALS DUPLICATE RESULTS

METHOD:

CLIENT:

PROJECT #:

PROJECT NAME: SAMPLE MATRIX: 6010

PTI Environmental

C4120308

McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE:

DATE DIGESTED:

DATE ANALYZED: **DILUTION FACTOR:**

UNITS:

412576

412576-1 12/13/94

12/19/94

mg/L

1

PARAMETER	SAMPLE RESULT	DUPLICATE RESULT	RPD	RPD CONTROL LIMIT	
ZINC	0.13	0.13	0	20	

METALS SPIKE RESULTS

METHOD:

6010

CLIENT:

PTI Environmental

PROJECT #: PROJECT NAME: C4120308 McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

QC SAMPLE:

DATE DIGESTED:

DATE ANALYZED:

DILUTION FACTOR:

UNITS:

412576

412576-1 12/13/94

12/19/94

PARAMETER	SAMPLE RESULT	SPIKE	SPIKE RESULT	% RECOV	CONTROL
ZINC	0.13	1.00	1.04	91	75-125%

PTI ENVIRONMENTAL SERVICES

CHAIN OF CUSTODY RECORD/ SAMPLE ANALYSIS REQUEST FORM

1975

Page __ of __

Project: (Nam Mc Cov	ne and Number)	Bax	ter	CY	120	30	B				4	Simp	elers:	v	u					Sampling Contact: Steve Barnett Phone: (503) 636-4358
Sample No.	Tag No.	Date	Time			S	ample	Matrix			/_		AI	nalys	es He	queste	90			Ship Samples to:
		hb,		Water	Sediment	Tissue	Soil	Air	Other	Concentration (L M H)	Composite or Grab	Zinc						Extra Container	Archive	Attn:
BT3A	76654	12-12	1015	X	5.							X		_	_	_				ATI 1.D. 412576
								10	la de la constante de la const		_			_						
Method of Sh	ipment:	į.					ndition on Rec								Cust	ody Se	eal Inte	act: Y	es 🗌	No None Broken by:
Relinquished b	py:	they see	(Sign	ature)	JA-				Re		by: _	bile Lab		d An	alysis	:	nature)	٧.	(Signatu	Date/Time

Distribution: Original and One Copy - Accompany Shipment; One Copy - Project File

FF Rev 1/91

17400 S.W. Upper Boones Ferry Road, Suite 270

Durham, OR. 97224

(503) 684-0447 (503) 620-0393 (FAX)

ATI I.D. 412713

RECEIVED JAN 05 1995

DTI

December 30, 1994

Steve Barnett PTI Environmental Services 400 Kruse Way, Pl. #2-285 Lake Oswego, OR 97035

Project Name / Number: McCormick & Baxter / C4120308

Attention: Steve Barnett

On December 29, 1994, Analytical Technologies, Inc. received one water sample for analysis for the above listed project. The sample was analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (503)684-0447.

Project Manager

AJK:alm Enclosure Alan J. Kleinschmidt

Laboratory Manager

SAMPLE CROSS REFERENCE SHEET

CLIENT:

PTI Environmental

ATI I.D.:

412713

PROJECT #:

PROJECT NAME:

#:

C4120308

McCormick & Baxter

MATRIX:

WATER

ATI #	CLIENT DESCRIPTION	DATE SAMPLED			
412713-1	втза	12/28/94			

-----TOTALS-----

MATRIX WATER # SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT:

PROJECT #:

PROJECT NAME:

PTI Environmental

C4120308

McCormick & Baxter

ATI I.D.: 412713

ANALYSIS	TECHNIQUE	REFERENCE	LAB
Zinc	ICAP	EPA 6010	PLD

PLD = ATI - Portland

ATI - Renton

= ATI - San Diego SD

PHX = ATI - Phoenix PNR =

ATI - Pensacola FC = ATI - Fort Collins

SUB = Subcontract

CLIENT I.D.:

Method Blank

CLIENT:

PTI Environmental

PROJECT #:

C4120308

PROJECT NAME: SAMPLE MATRIX:

McCormick & Baxter

WATER

ATI I.D.:

412713-0

DATE SAMPLED:

NA

DATE RECEIVED:

NA

DATE DIGESTED:
DATE ANALYZED:

12/29/94 12/29/94

DILUTION FACTOR:

1

UNITS:

mg/L

PARAMETER	RESULTS	METHOD		
ZINC	< 0.01	6010		

Analyst: 1,712/29/64

Reviewer: 12/29/94

CLIENT I.D.:

ВТЗА

CLIENT:

PTI Environmental

PROJECT #:

PARAMETER

C4120308

PROJECT NAME:

McCormick & Baxter

SAMPLE MATRIX:

WATER

ATI I.D.:

DATE SAMPLED:

412713-1 12/28/94

DATE RECEIVED:

12/29/94

DATE DIGESTED:

12/29/94

DATE ANALYZED:

12/29/94

DILUTION FACTOR: UNITS:

1 mg/L

RESULTS

METHOD

ZINC

0.22

6010

Analyst: 1. + 1.2129/94

Reviewer: 11. 12/29/94

METALS DUPLICATE RESULTS

METHOD:

CLIENT:

PROJECT #: PROJECT NAME: SAMPLE MATRIX: 6010

PTI Environmental

C4120308

McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE: DATE DIGESTED: DATE ANALYZED:

DILUTION FACTOR:

UNITS:

412713

412713-1

12/29/94 12/29/94

1

PARAMETER	SAMPLE RESULT	DUPLICATE RESULT	RPD	RPD CONTROL LIMIT
ZINC	0.22	0.23	4	20

METALS SPIKE RESULTS

METHOD:

CLIENT:

PROJECT #:

PROJECT NAME: SAMPLE MATRIX: 6010

PTI Environmental

C4120308

McCormick & Baxter

WATER

ATI I.D.:

QC SAMPLE:

DATE DIGESTED:

DATE ANALYZED:

DILUTION FACTOR:

UNITS:

412713

412713-1 12/29/94

12/29/94

1

mg/L

PARAMETER	SAMPLE RESULT	SPIKE	SPIKE RESULT	% RECOV	CONTROL LIMIT
ZINC	0.22	1.00	1.11	89	75-125%

Analyst: 11,7120144

Reviewer: 111-12/29/94

PTI ENVIRONMENTAL SERVICES

CHAIN OF CUSTODY RECORD/ SAMPLE ANALYSIS REQUEST FORM

1230

Page __ of __

McCov	mick &	Bal		C	412			Matrix		4	fh		plerg.	re		equested	<u> </u>		Sampling Contact: Steve Barnet Phone: 503-636-4338
Sample No.	Tag No.	Date	Time	Je.	Sediment			Matrix		Concentration (L M H)	Composite or Grab	Pinc		Analys	es He	equested	Extra Container	live	Attn:
BT3A	76655	12:28	J <i>U</i> 55	Water	Sed	Tissue	Soil	Air	Other	Con	Соп	X					Extr	Archive	Remarks -1 412712
																			RUSH
Method of Ship	ment:	7	1					of Sam					//	- 1	custo	dy Seal	Intact:	(es 🗌	No None Broken by:
elinquished by:	7.	~	AVI (Signate							eived b			//-			(Signatu			
(Signature)							(Signature) Received by Mobile Lab for Field Analysis: (Signature) (Signature)								Date/Time				